% inflation target (pitarg) modelled as AR1 % cy = 0.614479/0.769365 - obtained from the computed steady state from the nonlinear counterpart var pi mc mun muc c y n r g a pitarg ; varexo eps_g eps_a eps_e eps_m eps_targ; parameters beta xi hc wd sigma gamma rho_g rho_a rho_r rho_targ thetap cy varrho; beta = 0.99; xi = 0.5034; hc = 0.0; wd = 0.40; gamma = 0.5868; sigma = 4.0897; cy = 0.614479/0.769365; rho_g = 0.8325; rho_a = 0.9827; rho_r = 0.3529; thetap = 2.2161; varrho = 0.3853; rho_targ = 0.6133; model(linear); pi = (beta/(1+beta*gamma))*pi(+1)+(gamma/(1+beta*gamma))*pi(-1)+(((1-beta*xi)*(1-xi))/((1+beta*gamma)*xi))*(mc+eps_m); mc = mun-muc-a; mun = (c-hc*c(-1))/(1-hc)+wd*n/(1-wd)+muc; muc = ((1-varrho)*(1-sigma)-1)*(c-hc*c(-1))/(1-hc)-wd*varrho*(1-sigma)*n/(1-wd); muc(+1) = muc-(r-pi(+1)); y = cy*c+(1-cy)*g; n = y-a; r = rho_r*r(-1)+thetap*(1-rho_r)*(pi(+1)-rho_targ*pitarg)+eps_e; g = rho_g*g(-1)+eps_g; a = rho_a*a(-1)+eps_a; pitarg = rho_targ*pitarg(-1)+eps_targ; end; shocks; var eps_g; stderr 3.8505; var eps_a; stderr 0.7573; var eps_e; stderr 0.2409; var eps_m; stderr 0.8329; var eps_targ; stderr 0.3978; end; varobs pi mc mun muc c y n r g a pitarg; stoch_simul(partial_information,irf=30)pi y r;//pi n c y r;