function steady() % function steady() % computes and prints the steady state calculations % % INPUTS % none % % OUTPUTS % none % % SPECIAL REQUIREMENTS % none % Copyright © 2001-2023 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . global M_ oo_ options_ test_for_deep_parameters_calibration(M_); % Keep of a copy of M_.Sigma_e Sigma_e = M_.Sigma_e; % Set M_.Sigma_e=0 (we compute the *deterministic* steady state) M_.Sigma_e(:,:) = 0; if ~ismember(options_.homotopy_mode, [0 1 2 3]) error('STEADY: invalid value for homotopy_mode option') end if isfield(options_, 'homotopy_values') && options_.homotopy_mode == 0 warning('STEADY: a homotopy_setup block is present but homotopy will not be performed because homotopy_mode option is equal to 0') end if options_.homotopy_mode ~= 0 if ~isfield(options_, 'homotopy_values') error('STEADY: a homotopy_setup block must be present when the homotopy_mode option is specified') end if options_.steadystate_flag error('STEADY: Can''t use homotopy when providing a steady state external file'); end hv = options_.homotopy_values; if any(hv(:,1)~=1 & hv(:,1)~=2 & hv(:,1)~=4) % Already checked by the preprocessor, but let’s stay on the safe side error('HOMOTOPY_SETUP: incorrect variable types specified') end % If the “from_initval_to_endval” option was passed to the “homotopy_setup” block, add the relevant homotopy information if options_.homotopy_from_initval_to_endval if isempty(oo_.initial_exo_steady_state) error('HOMOTOPY_SETUP: the from_initval_to_endval option cannot be used without an endval block') end for i = 1:M_.exo_nbr if ~any(hv(:,1)==1 & hv(:,2)==i) % Do not overwrite information manually specified by the user hv = vertcat(hv, [ 1 i oo_.initial_exo_steady_state(i) oo_.exo_steady_state(i)]); end end end homotopy_func = str2func(['homotopy' num2str(options_.homotopy_mode)]); [M_,oo_,errorcode] = homotopy_func(hv, options_.homotopy_steps, M_, options_, oo_); if errorcode if errorcode == 2 disp('WARNING: homotopy failed at the first iteration (for the starting values)') else % errorcode == 1: print last successful point ip = find(hv(:,1) == 4); % Parameters ix = find(hv(:,1) == 1); % Exogenous ixd = find(hv(:,1) == 2); % Exogenous deterministic skipline() disp('WARNING: homotopy step was not completed') disp('The last values for which a solution was found are:') for i=1:length(ip) fprintf('%12s %12.6f\n',char(M_.param_names(hv(ip(i),2))), ... M_.params(hv(ip(i),2))) end for i=1:length(ix) fprintf('%12s %12.6f\n',char(M_.exo_names(hv(ix(i),2))), ... oo_.exo_steady_state(hv(ix(i),2))) end for i=1:length(ixd) fprintf('%12s %12.6f\n',char(M_.exo_det_names(hv(ixd(i),2))), ... oo_.exo_det_steady_state(hv(ixd(i),2))) end end if options_.homotopy_force_continue disp('Option homotopy_continue is set, so I continue ...') else error('Homotopy step failed') end end end [oo_.steady_state,M_.params,info] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck); if info(1) == 0 if ~options_.noprint disp_steady_state(M_,oo_,options_); end else if ~options_.noprint if ~isempty(oo_.steady_state) display_static_residuals(M_, options_, oo_); else skipline() disp('Residuals of the static equations cannot be computed because the steady state routine returned an empty vector.') skipline() end end if options_.debug fprintf('\nsteady: The steady state computation failed. It terminated with the following values:\n') if ~isreal(oo_.steady_state) format_string=sprintf('%%-%us= %%g%%+gi\n',size(strvcat(M_.endo_names),2)+1); else format_string=sprintf('%%-%us= %%14.6f\n',size(strvcat(M_.endo_names),2)+1); end for i=1:M_.orig_endo_nbr if ~isreal(oo_.steady_state) fprintf(format_string, M_.endo_names{i}, real(oo_.steady_state(i)),imag(oo_.steady_state(i))); else fprintf(format_string, M_.endo_names{i}, oo_.steady_state(i)); end end end print_info(info,options_.noprint, options_); end M_.Sigma_e = Sigma_e; function [M_,oo_,errorcode] = homotopy1(values, step_nbr, M_, options_, oo_) % Implements homotopy (mode 1) for steady-state computation. % The multi-dimensional vector going from the set of initial values % to the set of final values is divided in as many sub-vectors as % there are steps, and the problem is solved as many times. % % INPUTS % values: a matrix with 4 columns, representing the content of % homotopy_setup block, with one variable per line. % Column 1 is variable type (1 for exogenous, 2 for % exogenous deterministic, 4 for parameters) % Column 2 is symbol integer identifier. % Column 3 is initial value, and column 4 is final value. % Column 3 can contain NaNs, in which case previous % initialization of variable will be used as initial value. % step_nbr: number of steps for homotopy % M_ struct of model parameters % options_ struct of options % oo_ struct of outputs % % OUTPUTS % M_ struct of model parameters % oo_ struct of outputs % errorcode 0 in case of success % 1 if some homotopy steps were successful but it was not % possible to go up to 100%; in that case, parameters in % M_.params and exogenous in oo_ are left to the last % successful point % 2 if it wasn’t possible to compute a solution for the % starting values nv = size(values, 1); ip = find(values(:,1) == 4); % Parameters ix = find(values(:,1) == 1); % Exogenous ixd = find(values(:,1) == 2); % Exogenous deterministic % Construct vector of starting values, using previously initialized values % when initial value has not been given in homotopy_setup block oldvalues = values(:,3); ipn = find(values(:,1) == 4 & isnan(oldvalues)); oldvalues(ipn) = M_.params(values(ipn, 2)); ixn = find(values(:,1) == 1 & isnan(oldvalues)); oldvalues(ixn) = oo_.exo_steady_state(values(ixn, 2)); ixdn = find(values(:,1) == 2 & isnan(oldvalues)); oldvalues(ixdn) = oo_.exo_det_steady_state(values(ixdn, 2)); points = zeros(nv, step_nbr+1); for i = 1:nv if (oldvalues(i) ~= values(i, 4)) points(i,:) = oldvalues(i):(values(i,4)-oldvalues(i))/step_nbr:values(i,4); else points(i,:) = values(i,4); end end for i=1:step_nbr+1 disp([ 'HOMOTOPY mode 1: computing step ' int2str(i-1) '/' int2str(step_nbr) '...' ]) M_.params(values(ip,2)) = points(ip,i); oo_.exo_steady_state(values(ix,2)) = points(ix,i); oo_.exo_det_steady_state(values(ixd,2)) = points(ixd,i); [oo_.steady_state,M_.params,info] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck); if info(1) if i == 1 errorcode = 2; else M_.params = last_successful_params; oo_.exo_steady_state = last_successful_exo; oo_.exo_det_steady_state = last_successful_exo_det; errorcode = 1; end return end last_successful_params = M_.params; last_successful_exo = oo_.exo_steady_state; last_successful_exo_det = oo_.exo_det_steady_state; end errorcode = 0; function [M_, oo_, errorcode] = homotopy2(values, step_nbr, M_, options_, oo_) % Implements homotopy (mode 2) for steady-state computation. % Only one parameter/exogenous is changed at a time. % Computation jumps to next variable only when current variable has been % brought to its final value. % Variables are processed in the order in which they appear in "values". % The problem is solved var_nbr*step_nbr times. % % See homotopy1 for the description of inputs and outputs. nv = size(values, 1); oldvalues = values(:,3); % Initialize all variables with initial value, or the reverse... for i = 1:nv switch values(i,1) case 1 if isnan(oldvalues(i)) oldvalues(i) = oo_.exo_steady_state(values(i,2)); else oo_.exo_steady_state(values(i,2)) = oldvalues(i); end case 2 if isnan(oldvalues(i)) oldvalues(i) = oo_.exo_det_steady_state(values(i,2)); else oo_.exo_det_steady_state(values(i,2)) = oldvalues(i); end case 4 if isnan(oldvalues(i)) oldvalues(i) = M_.params(values(i,2)); else M_.params(values(i,2)) = oldvalues(i); end otherwise error('HOMOTOPY mode 2: incorrect variable types specified') end end if any(oldvalues == values(:,4)) error('HOMOTOPY mode 2: initial and final values should be different') end % Actually do the homotopy for i = 1:nv switch values(i,1) case 1 varname = M_.exo_names{values(i,2)}; case 2 varname = M_.exo_det_names{values(i,2)}; case 4 varname = M_.param_names{values(i,2)}; end for v = oldvalues(i):(values(i,4)-oldvalues(i))/step_nbr:values(i,4) switch values(i,1) case 1 oo_.exo_steady_state(values(i,2)) = v; case 2 oo_.exo_det_steady_state(values(i,2)) = v; case 4 M_.params(values(i,2)) = v; end disp([ 'HOMOTOPY mode 2: lauching solver with ' varname ' = ' num2str(v) ' ...']) [oo_.steady_state, M_.params, info] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck); if info(1) if i == 1 && v == oldvalues(1) errorcode = 2; else M_.params = last_successful_params; oo_.exo_steady_state = last_successful_exo; oo_.exo_det_steady_state = last_successful_exo_det; errorcode = 1; end return end last_successful_params = M_.params; last_successful_exo = oo_.exo_steady_state; last_successful_exo_det = oo_.exo_det_steady_state; end end errorcode = 0; function [M_,oo_,errorcode] = homotopy3(values, step_nbr, M_, options_, oo_) % Implements homotopy (mode 3) for steady-state computation. % Tries first the most extreme values. If it fails to compute the steady % state, the interval between initial and desired values is divided by two % for each parameter. Every time that it is impossible to find a steady % state, the previous interval is divided by two. When one succeed to find % a steady state, the previous interval is multiplied by two. % % See homotopy1 for the description of inputs and outputs. info = []; tol = 1e-8; nv = size(values,1); ip = find(values(:,1) == 4); % Parameters ix = find(values(:,1) == 1); % Exogenous ixd = find(values(:,1) == 2); % Exogenous deterministic % Construct vector of starting values, using previously initialized values % when initial value has not been given in homotopy_setup block oldvalues = values(:,3); ipn = find(values(:,1) == 4 & isnan(oldvalues)); oldvalues(ipn) = M_.params(values(ipn, 2)); ixn = find(values(:,1) == 1 & isnan(oldvalues)); oldvalues(ixn) = oo_.exo_steady_state(values(ixn, 2)); ixdn = find(values(:,1) == 2 & isnan(oldvalues)); oldvalues(ixdn) = oo_.exo_det_steady_state(values(ixdn, 2)); targetvalues = values(:,4); iplus = find(targetvalues > oldvalues); iminus = find(targetvalues < oldvalues); curvalues = oldvalues; inc = (targetvalues-oldvalues)/2; kplus = []; kminus = []; last_successful_values = []; disp('HOMOTOPY mode 3: launching solver at initial point...') iter = 1; while iter <= step_nbr M_.params(values(ip,2)) = curvalues(ip); oo_.exo_steady_state(values(ix,2)) = curvalues(ix); oo_.exo_det_steady_state(values(ixd,2)) = curvalues(ixd); old_ss = oo_.steady_state; [steady_state,params,info] = evaluate_steady_state(old_ss,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck); if info(1) == 0 oo_.steady_state = steady_state; M_.params = params; if length([kplus; kminus]) == nv errorcode = 0; return end if iter == 1 disp('HOMOTOPY mode 3: successful step, now jumping to final point...') else disp('HOMOTOPY mode 3: successful step, now multiplying increment by 2...') end last_successful_values = curvalues; last_successful_params = params; last_successful_exo_steady_state = oo_.exo_steady_state; last_successful_exo_det_steady_state = oo_.exo_det_steady_state; inc = 2*inc; elseif iter == 1 errorcode = 2; return else disp('HOMOTOPY mode 3: failed step, now dividing increment by 2...') inc = inc/2; oo_.steady_state = old_ss; end curvalues = last_successful_values + inc; kplus = find(curvalues(iplus) >= targetvalues(iplus)); curvalues(iplus(kplus)) = targetvalues(iplus(kplus)); kminus = find(curvalues(iminus) <= targetvalues(iminus)); curvalues(iminus(kminus)) = targetvalues(iminus(kminus)); if max(abs(inc)) < tol disp('HOMOTOPY mode 3: failed, increment has become too small') M_.params = last_successful_params; oo_.exo_steady_state = last_successful_exo_steady_state; oo_.exo_det_steady_state = last_successful_exo_det_steady_state; errorcode = 1; return end iter = iter + 1; end disp('HOMOTOPY mode 3: failed, maximum iterations reached; you may want to increase the homotopy_steps option') M_.params = last_successful_params; oo_.exo_steady_state = last_successful_exo_steady_state; oo_.exo_det_steady_state = last_successful_exo_det_steady_state; errorcode = 1;