function [yf,int_width,int_width_ME]=forcst(dr,y0,horizon,var_list,M_,oo_,options_) % function [yf,int_width,int_width_ME]=forecst(dr,y0,horizon,var_list,M_,oo_,options_) % computes mean forecast for a given value of the parameters % computes also confidence band for the forecast % % INPUTS: % dr: structure containing decision rules % y0: initial values % horizon: nbr of periods to forecast % var_list: list of variables (character matrix) % M_: Dynare model structure % options_: Dynare options structure % oo_: Dynare results structure % OUTPUTS: % yf: mean forecast % int_width: distance between upper bound and % mean forecast % int_width_ME:distance between upper bound and % mean forecast when considering measurement error % % SPECIAL REQUIREMENTS % none % Copyright © 2003-2019 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . yf = simult_(M_,options_,y0,dr,zeros(horizon,M_.exo_nbr),1); nstatic = M_.nstatic; nspred = M_.nspred; nc = size(dr.ghx,2); inv_order_var = dr.inv_order_var; [A,B] = kalman_transition_matrix(dr,nstatic+(1:nspred),1:nc); if isempty(var_list) var_list = M_.endo_names(1:M_.orig_endo_nbr); end nvar = length(var_list); ivar = zeros(nvar, 1); for i=1:nvar i_tmp = strmatch(var_list{i}, M_.endo_names, 'exact'); if isempty(i_tmp) disp(var_list{i}); error ('One of the variable specified does not exist') ; else ivar(i) = i_tmp; end end ghx1 = dr.ghx(inv_order_var(ivar),:); ghu1 = dr.ghu(inv_order_var(ivar),:); %initialize recursion sigma_u = B*M_.Sigma_e*B'; sigma_u1 = ghu1*M_.Sigma_e*ghu1'; sigma_y = 0; %no uncertainty about the states var_yf = NaN(horizon,nvar); %initialize for i = 1:horizon %map uncertainty about states into uncertainty about observables sigma_y1 = ghx1*sigma_y*ghx1'+sigma_u1; var_yf(i,:) = diag(sigma_y1)'; if i == horizon break end %update uncertainty about states sigma_u = A*sigma_u*A'; sigma_y = sigma_y+sigma_u; end if nargout==3 var_yf_ME=var_yf; [loc_H, loc_varlist] = ismember(options_.varobs, var_list); loc_varlist(loc_varlist==0) = []; if ~isempty(loc_varlist) var_yf_ME(:,loc_varlist) = var_yf(:,loc_varlist)+repmat(diag(M_.H(loc_H,loc_H))', horizon, 1); end int_width_ME = zeros(horizon, nvar); end fact = norminv((1-options_.forecasts.conf_sig)/2, 0, 1); int_width = zeros(horizon, nvar); for i = 1:nvar int_width(:,i) = -fact*sqrt(var_yf(:,i)); if nargout==3 int_width_ME(:,i) = -fact*sqrt(var_yf_ME(:,i)); end end yf = yf(ivar,:);