Compare commits

...

7 Commits

Author SHA1 Message Date
Stéphane Adjemian (Ryûk) 1839529288
Add member to dprior class.
Name of the parameter.
2023-07-11 16:40:42 +02:00
Stéphane Adjemian (Ryûk) b5cbc397a6
One file per method. 2023-07-11 15:30:07 +02:00
Stéphane Adjemian (Ryûk) e05e9c5690
Add methods for computing moments.
- prior mean
 - prior mode
 - prior median
 - prior variance
2023-07-11 08:42:29 +02:00
Stéphane Adjemian (Ryûk) 301a45ef59
Add members to @dprior class. 2023-07-08 11:43:19 +02:00
Stéphane Adjemian (Ryûk) 5375070fa3
Make last input argument optional. 2023-07-08 11:43:19 +02:00
Stéphane Adjemian (Ryûk) 278b669a33
Add methods to dprior (density and densities).
Will be used as a replacement for priordens.
2023-07-08 11:43:19 +02:00
Stéphane Adjemian (Ryûk) 90f5fc72c9
Cosmetic changes. 2023-07-08 11:43:17 +02:00
16 changed files with 1518 additions and 376 deletions

View File

@ -0,0 +1,35 @@
function lpd = densities(o, X)
% Evaluate the logged prior densities at X (for each column).
%
% INPUTS
% - o [dprior]
% - X [double] m×n matrix, n points where the prior density is evaluated.
%
% OUTPUTS
% - lpd [double] 1×n, values of the logged prior density at X.
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
n = columns(X);
lpd = NaN(1, n);
parfor i=1:n
lpd(i) = density(o, X(:,i));
end

384
matlab/@dprior/density.m Normal file
View File

@ -0,0 +1,384 @@
function [lpd, dlpd, d2lpd, info] = density(o, x)
% Evaluate the logged prior density at x.
%
% INPUTS
% - o [dprior]
% - x [double] m×1 vector, point where the prior density is evaluated.
%
% OUTPUTS
% - lpd [double] scalar, value of the logged prior density at x.
% - dlpd [double] m×1 vector, first order derivatives.
% - d2lpd [double] m×1 vector, second order derivatives.
%
% REMARKS
% Second order derivatives holder, d2lpd, has the same rank and shape than dlpd because the priors are
% independent (we would have to use a matrix if non orthogonal priors were allowed in Dynare).
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> lpd = Prior.dsensity(x)
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
lpd = 0.0;
if nargout>1
dlpd = zeros(1, length(x));
if nargout>2
d2lpd = dlpd;
if nargout>3
info = [];
end
end
end
if o.isuniform
if any(x(o.iduniform)-o.p3(o.iduniform)<0) || any(x(o.iduniform)-o.p4(o.iduniform)>0)
lpd = -Inf ;
if nargout==4
info = o.iduniform((x(o.iduniform)-o.p3(o.iduniform)<0) || (x(o.iduniform)-o.p4(o.iduniform)>0));
end
return
end
lpd = lpd - sum(log(o.p4(o.iduniform)-o.p3(o.iduniform))) ;
if nargout>1
dlpd(o.iduniform) = zeros(length(o.iduniform), 1);
if nargout>2
d2lpd(o.iduniform) = zeros(length(o.iduniform), 1);
end
end
end
if o.isgaussian
switch nargout
case 1
lpd = lpd + sum(lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian)));
case 2
[tmp, dlpd(o.idgaussian)] = lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian));
lpd = lpd + sum(tmp);
case {3,4}
[tmp, dlpd(o.idgaussian), d2lpd(o.idgaussian)] = lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian));
lpd = lpd + sum(tmp);
end
end
if o.isgamma
switch nargout
case 1
lpd = lpd + sum(lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idgamma), d2lpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idgamma), d2lpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idgamma(isinf(tmp));
return
end
end
end
if o.isbeta
switch nargout
case 1
lpd = lpd + sum(lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idbeta), d2lpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idbeta), d2lpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idbeta(isinf(tmp));
return
end
end
end
if o.isinvgamma1
switch nargout
case 1
lpd = lpd + sum(lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idinvgamma1), d2lpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idinvgamma1), d2lpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idinvgamma1(isinf(tmp));
return
end
end
end
if o.isinvgamma2
switch nargout
case 1
lpd = lpd + sum(lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idinvgamma2), d2lpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idinvgamma2), d2lpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idinvgamma2(isinf(tmp));
return
end
end
end
if o.isweibull
switch nargout
case 1
lpd = lpd + sum(lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idweibull), d2lpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idweibull), d2lpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idweibull(isinf(tmp));
return
end
end
end
return % --*-- Unit tests --*--
%@test:1
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;
% Call the tested routine
try
Prior = dprior(BayesInfo, prior_trunc, false);
% Compute density at the prior mode
lpdstar = Prior.density(p5);
% Draw random deviates in a loop and evaluate the density.
LPD = NaN(10000,1);
parfor i = 1:10000
x = Prior.draw();
LPD(i) = Prior.density(x);
end
t(1) = true;
catch
t(1) = false;
end
if t(1)
t(2) = all(LPD<=lpdstar);
end
T = all(t);
%@eof:1
%@test:2
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;
% Call the tested routine
try
Prior = dprior(BayesInfo, prior_trunc, false);
mu = NaN(14,1);
std = NaN(14,1);
for i=1:14
% Define conditional density (it's also a marginal since priors are orthogonal)
f = @(x) exp(Prior.densities(substitute(p5, i, x)));
% TODO: Check the version of Octave we use (integral is available as a compatibility wrapper in latest Octave version)
m = integral(f, p3(i), p4(i));
density = @(x) f(x)/m; % rescaling is required since the probability mass depends on the conditioning.
% Compute the conditional expectation
mu(i) = integral(@(x) x.*density(x), p3(i), p4(i));
std(i) = sqrt(integral(@(x) ((x-mu(i)).^2).*density(x), p3(i), p4(i)));
end
t(1) = true;
catch
t(1) = false;
end
if t(1)
t(2) = all(abs(mu-.4)<1e-6);
t(3) = all(abs(std-.2)<1e-6);
end
T = all(t);
%@eof:2

View File

@ -1,26 +1,48 @@
classdef dprior
classdef dprior < handle
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
properties
p6 = []; % Prior first hyperparameter.
p7 = []; % Prior second hyperparameter.
p1 = []; % Prior mean.
p2 = []; % Prior stddev.
p3 = []; % Lower bound of the prior support.
p4 = []; % Upper bound of the prior support.
p5 = []; % Prior mode.
p6 = []; % Prior first hyperparameter.
p7 = []; % Prior second hyperparameter.
p11 = []; % Prior median
lb = []; % Truncated prior lower bound.
ub = []; % Truncated prior upper bound.
uniform_index = []; % Index for the uniform priors.
gaussian_index = []; % Index for the gaussian priors.
gamma_index = []; % Index for the gamma priors.
beta_index = []; % Index for the beta priors.
inverse_gamma_1_index = []; % Index for the inverse gamma type 1 priors.
inverse_gamma_2_index = []; % Index for the inverse gamma type 2 priors.
weibull_index = []; % Index for the weibull priors.
uniform_draws = false;
gaussian_draws = false;
gamma_draws = false;
beta_draws = false;
inverse_gamma_1_draws = false;
inverse_gamma_2_draws = false;
weibull_draws = false;
name = {}; % Name of the parameter
iduniform = []; % Index for the uniform priors.
idgaussian = []; % Index for the gaussian priors.
idgamma = []; % Index for the gamma priors.
idbeta = []; % Index for the beta priors.
idinvgamma1 = []; % Index for the inverse gamma type 1 priors.
idinvgamma2 = []; % Index for the inverse gamma type 2 priors.
idweibull = []; % Index for the weibull priors.
isuniform = false;
isgaussian = false;
isgamma = false;
isbeta = false;
isinvgamma1 = false;
isinvgamma2 = false;
isweibull = false;
end
methods
@ -38,10 +60,37 @@ classdef dprior
%
% REQUIREMENTS
% None.
o.p6 = BayesInfo.p6;
o.p7 = BayesInfo.p7;
o.p3 = BayesInfo.p3;
o.p4 = BayesInfo.p4;
if ~nargin
% Empty object
return
end
if isfield(BayesInfo, 'p1')
o.p1 = BayesInfo.p1;
end
if isfield(BayesInfo, 'p2')
o.p2 = BayesInfo.p2;
end
if isfield(BayesInfo, 'p3')
o.p3 = BayesInfo.p3;
end
if isfield(BayesInfo, 'p4')
o.p4 = BayesInfo.p4;
end
if isfield(BayesInfo, 'p5')
o.p5 = BayesInfo.p5;
end
if isfield(BayesInfo, 'p6')
o.p6 = BayesInfo.p6;
end
if isfield(BayesInfo, 'p7')
o.p7 = BayesInfo.p7;
end
if isfield(BayesInfo, 'p11')
o.p11 = BayesInfo.p11;
end
if isfield(BayesInfo, 'name')
o.name = BayesInfo.name;
end
bounds = prior_bounds(BayesInfo, PriorTrunc);
o.lb = bounds.lb;
o.ub = bounds.ub;
@ -50,138 +99,38 @@ classdef dprior
else
prior_shape = BayesInfo.pshape;
end
o.beta_index = find(prior_shape==1);
if ~isempty(o.beta_index)
o.beta_draws = true;
o.idbeta = find(prior_shape==1);
if ~isempty(o.idbeta)
o.isbeta = true;
end
o.gamma_index = find(prior_shape==2);
if ~isempty(o.gamma_index)
o.gamma_draws = true;
o.idgamma = find(prior_shape==2);
if ~isempty(o.idgamma)
o.isgamma = true;
end
o.gaussian_index = find(prior_shape==3);
if ~isempty(o.gaussian_index)
o.gaussian_draws = true;
o.idgaussian = find(prior_shape==3);
if ~isempty(o.idgaussian)
o.isgaussian = true;
end
o.inverse_gamma_1_index = find(prior_shape==4);
if ~isempty(o.inverse_gamma_1_index)
o.inverse_gamma_1_draws = true;
o.idinvgamma1 = find(prior_shape==4);
if ~isempty(o.idinvgamma1)
o.isinvgamma1 = true;
end
o.uniform_index = find(prior_shape==5);
if ~isempty(o.uniform_index)
o.uniform_draws = true;
o.iduniform = find(prior_shape==5);
if ~isempty(o.iduniform)
o.isuniform = true;
end
o.inverse_gamma_2_index = find(prior_shape==6);
if ~isempty(o.inverse_gamma_2_index)
o.inverse_gamma_2_draws = true;
o.idinvgamma2 = find(prior_shape==6);
if ~isempty(o.idinvgamma2)
o.isinvgamma2 = true;
end
o.weibull_index = find(prior_shape==8);
if ~isempty(o.weibull_index)
o.weibull_draws = true;
o.idweibull = find(prior_shape==8);
if ~isempty(o.idweibull)
o.isweibull = true;
end
end
function p = draw(o)
% Return a random draw from the prior distribution.
%
% INPUTS
% - o [dprior]
%
% OUTPUTS
% - p [double] m×1 vector, random draw from the prior distribution (m is the number of estimated parameters).
%
% REMARKS
% None.
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> d = Prior.draw()
p = NaN(rows(o.lb), 1);
if o.uniform_draws
p(o.uniform_index) = rand(length(o.uniform_index),1).*(o.p4(o.uniform_index)-o.p3(o.uniform_index)) + o.p3(o.uniform_index);
out_of_bound = find( (p(o.uniform_index)>o.ub(o.uniform_index)) | (p(o.uniform_index)<o.lb(o.uniform_index)));
while ~isempty(out_of_bound)
p(o.uniform_index) = rand(length(o.uniform_index), 1).*(o.p4(o.uniform_index)-o.p3(o.uniform_index)) + o.p3(o.uniform_index);
out_of_bound = find( (p(o.uniform_index)>o.ub(o.uniform_index)) | (p(o.uniform_index)<o.lb(o.uniform_index)));
end
end
if o.gaussian_draws
p(o.gaussian_index) = randn(length(o.gaussian_index), 1).*o.p7(o.gaussian_index) + o.p6(o.gaussian_index);
out_of_bound = find( (p(o.gaussian_index)>o.ub(o.gaussian_index)) | (p(o.gaussian_index)<o.lb(o.gaussian_index)));
while ~isempty(out_of_bound)
p(o.gaussian_index(out_of_bound)) = randn(length(o.gaussian_index(out_of_bound)), 1).*o.p7(o.gaussian_index(out_of_bound)) + o.p6(o.gaussian_index(out_of_bound));
out_of_bound = find( (p(o.gaussian_index)>o.ub(o.gaussian_index)) | (p(o.gaussian_index)<o.lb(o.gaussian_index)));
end
end
if o.gamma_draws
p(o.gamma_index) = gamrnd(o.p6(o.gamma_index), o.p7(o.gamma_index))+o.p3(o.gamma_index);
out_of_bound = find( (p(o.gamma_index)>o.ub(o.gamma_index)) | (p(o.gamma_index)<o.lb(o.gamma_index)));
while ~isempty(out_of_bound)
p(o.gamma_index(out_of_bound)) = gamrnd(o.p6(o.gamma_index(out_of_bound)), o.p7(o.gamma_index(out_of_bound)))+o.p3(o.gamma_index(out_of_bound));
out_of_bound = find( (p(o.gamma_index)>o.ub(o.gamma_index)) | (p(o.gamma_index)<o.lb(o.gamma_index)));
end
end
if o.beta_draws
p(o.beta_index) = (o.p4(o.beta_index)-o.p3(o.beta_index)).*betarnd(o.p6(o.beta_index), o.p7(o.beta_index))+o.p3(o.beta_index);
out_of_bound = find( (p(o.beta_index)>o.ub(o.beta_index)) | (p(o.beta_index)<o.lb(o.beta_index)));
while ~isempty(out_of_bound)
p(o.beta_index(out_of_bound)) = (o.p4(o.beta_index(out_of_bound))-o.p3(o.beta_index(out_of_bound))).*betarnd(o.p6(o.beta_index(out_of_bound)), o.p7(o.beta_index(out_of_bound)))+o.p3(o.beta_index(out_of_bound));
out_of_bound = find( (p(o.beta_index)>o.ub(o.beta_index)) | (p(o.beta_index)<o.lb(o.beta_index)));
end
end
if o.inverse_gamma_1_draws
p(o.inverse_gamma_1_index) = ...
sqrt(1./gamrnd(o.p7(o.inverse_gamma_1_index)/2, 2./o.p6(o.inverse_gamma_1_index)))+o.p3(o.inverse_gamma_1_index);
out_of_bound = find( (p(o.inverse_gamma_1_index)>o.ub(o.inverse_gamma_1_index)) | (p(o.inverse_gamma_1_index)<o.lb(o.inverse_gamma_1_index)));
while ~isempty(out_of_bound)
p(o.inverse_gamma_1_index(out_of_bound)) = ...
sqrt(1./gamrnd(o.p7(o.inverse_gamma_1_index(out_of_bound))/2, 2./o.p6(o.inverse_gamma_1_index(out_of_bound))))+o.p3(o.inverse_gamma_1_index(out_of_bound));
out_of_bound = find( (p(o.inverse_gamma_1_index)>o.ub(o.inverse_gamma_1_index)) | (p(o.inverse_gamma_1_index)<o.lb(o.inverse_gamma_1_index)));
end
end
if o.inverse_gamma_2_draws
p(o.inverse_gamma_2_index) = ...
1./gamrnd(o.p7(o.inverse_gamma_2_index)/2, 2./o.p6(o.inverse_gamma_2_index))+o.p3(o.inverse_gamma_2_index);
out_of_bound = find( (p(o.inverse_gamma_2_index)>o.ub(o.inverse_gamma_2_index)) | (p(o.inverse_gamma_2_index)<o.lb(o.inverse_gamma_2_index)));
while ~isempty(out_of_bound)
p(o.inverse_gamma_2_index(out_of_bound)) = ...
1./gamrnd(o.p7(o.inverse_gamma_2_index(out_of_bound))/2, 2./o.p6(o.inverse_gamma_2_index(out_of_bound)))+o.p3(o.inverse_gamma_2_index(out_of_bound));
out_of_bound = find( (p(o.inverse_gamma_2_index)>o.ub(o.inverse_gamma_2_index)) | (p(o.inverse_gamma_2_index)<o.lb(o.inverse_gamma_2_index)));
end
end
if o.weibull_draws
p(o.weibull_index) = wblrnd(o.p7(o.weibull_index), o.p6(o.weibull_index)) + o.p3(o.weibull_index);
out_of_bound = find( (p(o.weibull_index)>o.ub(o.weibull_index)) | (p(o.weibull_index)<o.lb(o.weibull_index)));
while ~isempty(out_of_bound)
p(o.weibull_index(out_of_bound)) = wblrnd(o.p7(o.weibull_index(out_of_bound)), o.p6(o.weibull_index(out_of_bound)))+o.p3(o.weibull_index(out_of_bound));
out_of_bound = find( (p(o.weibull_index)>o.ub(o.weibull_index)) | (p(o.weibull_index)<o.lb(o.weibull_index)));
end
end
end
function P = draws(o, n)
% Return n independent random draws from the prior distribution.
%
% INPUTS
% - o [dprior]
%
% OUTPUTS
% - P [double] m×n matrix, random draw from the prior distribution.
%
% REMARKS
% If the Parallel Computing Toolbox is available, the main loop is run in parallel.
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> Prior.draws(1e6)
P = NaN(rows(o.lb), 1);
parfor i=1:n
P(:,i) = draw(o);
end
end
end % dprior (constructor)
end % methods
end % classdef --*-- Unit tests --*--
%@test:1
@ -263,114 +212,22 @@ end % classdef --*-- Unit tests --*--
%$ try
%$ % Instantiate dprior object
%$ o = dprior(BayesInfo, prior_trunc, false);
%$ % Do simulations in a loop and estimate recursively the mean and the variance.
%$ for i = 1:ndraws
%$ draw = o.draw();
%$ m1 = m0 + (draw-m0)/i;
%$ m2 = m1*m1';
%$ v0 = v0 + ((draw*draw'-m2-v0) + (i-1)*(m0*m0'-m2'))/i;
%$ m0 = m1;
%$ end
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ if t(1)
%$ t(2) = all(abs(m0-BayesInfo.p1)<3e-3);
%$ t(3) = all(all(abs(v0-diag(BayesInfo.p2.^2))<5e-3));
%$ end
%$ T = all(t);
%@eof:1
%@test:2
%$ % Fill global structures with required fields...
%$ prior_trunc = 1e-10;
%$ p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
%$ p1 = .4*ones(14,1); % Prior mean
%$ p2 = .2*ones(14,1); % Prior std.
%$ p3 = NaN(14,1);
%$ p4 = NaN(14,1);
%$ p5 = NaN(14,1);
%$ p6 = NaN(14,1);
%$ p7 = NaN(14,1);
%$
%$ for i=1:14
%$ switch p0(i)
%$ case 1
%$ % Beta distribution
%$ p3(i) = 0;
%$ p4(i) = 1;
%$ [p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
%$ case 2
%$ % Gamma distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
%$ case 3
%$ % Normal distribution
%$ p3(i) = -Inf;
%$ p4(i) = Inf;
%$ p6(i) = p1(i);
%$ p7(i) = p2(i);
%$ p5(i) = p1(i);
%$ case 4
%$ % Inverse Gamma (type I) distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
%$ case 5
%$ % Uniform distribution
%$ [p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
%$ p3(i) = p6(i);
%$ p4(i) = p7(i);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
%$ case 6
%$ % Inverse Gamma (type II) distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
%$ case 8
%$ % Weibull distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
%$ otherwise
%$ error('This density is not implemented!')
%$ end
%$ end
%$
%$ BayesInfo.pshape = p0;
%$ BayesInfo.p1 = p1;
%$ BayesInfo.p2 = p2;
%$ BayesInfo.p3 = p3;
%$ BayesInfo.p4 = p4;
%$ BayesInfo.p5 = p5;
%$ BayesInfo.p6 = p6;
%$ BayesInfo.p7 = p7;
%$
%$ ndraws = 1e5;
%$
%$ % Call the tested routine
%$ try
%$ % Instantiate dprior object.
%$ o = dprior(BayesInfo, prior_trunc, false);
%$ X = o.draws(ndraws);
%$ m = mean(X, 2);
%$ v = var(X, 0, 2);
%$ % Instantiate dprior object
%$ o = dprior();
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ if t(1)
%$ t(2) = all(abs(m-BayesInfo.p1)<3e-3);
%$ t(3) = all(all(abs(v-BayesInfo.p2.^2)<5e-3));
%$ end
%$ T = all(t);
%@eof:2

197
matlab/@dprior/draw.m Normal file
View File

@ -0,0 +1,197 @@
function p = draw(o)
% Return a random draw from the prior distribution.
%
% INPUTS
% - o [dprior]
%
% OUTPUTS
% - p [double] m×1 vector, random draw from the prior distribution (m is the number of estimated parameters).
%
% REMARKS
% None.
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> d = Prior.draw()
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
p = NaN(rows(o.lb), 1);
if o.isuniform
p(o.iduniform) = rand(length(o.iduniform),1).*(o.p4(o.iduniform)-o.p3(o.iduniform)) + o.p3(o.iduniform);
oob = find( (p(o.iduniform)>o.ub(o.iduniform)) | (p(o.iduniform)<o.lb(o.iduniform)));
while ~isempty(oob)
p(o.iduniform) = rand(length(o.iduniform), 1).*(o.p4(o.iduniform)-o.p3(o.iduniform)) + o.p3(o.iduniform);
oob = find( (p(o.iduniform)>o.ub(o.iduniform)) | (p(o.iduniform)<o.lb(o.iduniform)));
end
end
if o.isgaussian
p(o.idgaussian) = randn(length(o.idgaussian), 1).*o.p7(o.idgaussian) + o.p6(o.idgaussian);
oob = find( (p(o.idgaussian)>o.ub(o.idgaussian)) | (p(o.idgaussian)<o.lb(o.idgaussian)));
while ~isempty(oob)
p(o.idgaussian(oob)) = randn(length(o.idgaussian(oob)), 1).*o.p7(o.idgaussian(oob)) + o.p6(o.idgaussian(oob));
oob = find( (p(o.idgaussian)>o.ub(o.idgaussian)) | (p(o.idgaussian)<o.lb(o.idgaussian)));
end
end
if o.isgamma
p(o.idgamma) = gamrnd(o.p6(o.idgamma), o.p7(o.idgamma))+o.p3(o.idgamma);
oob = find( (p(o.idgamma)>o.ub(o.idgamma)) | (p(o.idgamma)<o.lb(o.idgamma)));
while ~isempty(oob)
p(o.idgamma(oob)) = gamrnd(o.p6(o.idgamma(oob)), o.p7(o.idgamma(oob)))+o.p3(o.idgamma(oob));
oob = find( (p(o.idgamma)>o.ub(o.idgamma)) | (p(o.idgamma)<o.lb(o.idgamma)));
end
end
if o.isbeta
p(o.idbeta) = (o.p4(o.idbeta)-o.p3(o.idbeta)).*betarnd(o.p6(o.idbeta), o.p7(o.idbeta))+o.p3(o.idbeta);
oob = find( (p(o.idbeta)>o.ub(o.idbeta)) | (p(o.idbeta)<o.lb(o.idbeta)));
while ~isempty(oob)
p(o.idbeta(oob)) = (o.p4(o.idbeta(oob))-o.p3(o.idbeta(oob))).*betarnd(o.p6(o.idbeta(oob)), o.p7(o.idbeta(oob)))+o.p3(o.idbeta(oob));
oob = find( (p(o.idbeta)>o.ub(o.idbeta)) | (p(o.idbeta)<o.lb(o.idbeta)));
end
end
if o.isinvgamma1
p(o.idinvgamma1) = ...
sqrt(1./gamrnd(o.p7(o.idinvgamma1)/2, 2./o.p6(o.idinvgamma1)))+o.p3(o.idinvgamma1);
oob = find( (p(o.idinvgamma1)>o.ub(o.idinvgamma1)) | (p(o.idinvgamma1)<o.lb(o.idinvgamma1)));
while ~isempty(oob)
p(o.idinvgamma1(oob)) = ...
sqrt(1./gamrnd(o.p7(o.idinvgamma1(oob))/2, 2./o.p6(o.idinvgamma1(oob))))+o.p3(o.idinvgamma1(oob));
oob = find( (p(o.idinvgamma1)>o.ub(o.idinvgamma1)) | (p(o.idinvgamma1)<o.lb(o.idinvgamma1)));
end
end
if o.isinvgamma2
p(o.idinvgamma2) = ...
1./gamrnd(o.p7(o.idinvgamma2)/2, 2./o.p6(o.idinvgamma2))+o.p3(o.idinvgamma2);
oob = find( (p(o.idinvgamma2)>o.ub(o.idinvgamma2)) | (p(o.idinvgamma2)<o.lb(o.idinvgamma2)));
while ~isempty(oob)
p(o.idinvgamma2(oob)) = ...
1./gamrnd(o.p7(o.idinvgamma2(oob))/2, 2./o.p6(o.idinvgamma2(oob)))+o.p3(o.idinvgamma2(oob));
oob = find( (p(o.idinvgamma2)>o.ub(o.idinvgamma2)) | (p(o.idinvgamma2)<o.lb(o.idinvgamma2)));
end
end
if o.isweibull
p(o.idweibull) = wblrnd(o.p7(o.idweibull), o.p6(o.idweibull)) + o.p3(o.idweibull);
oob = find( (p(o.idweibull)>o.ub(o.idweibull)) | (p(o.idweibull)<o.lb(o.idweibull)));
while ~isempty(oob)
p(o.idweibull(oob)) = wblrnd(o.p7(o.idweibull(oob)), o.p6(o.idweibull(oob)))+o.p3(o.idweibull(oob));
oob = find( (p(o.idweibull)>o.ub(o.idweibull)) | (p(o.idweibull)<o.lb(o.idweibull)));
end
end
return % --*-- Unit tests --*--
%@test:1
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;
ndraws = 1e5;
m0 = BayesInfo.p1; %zeros(14,1);
v0 = diag(BayesInfo.p2.^2); %zeros(14);
% Call the tested routine
try
% Instantiate dprior object
o = dprior(BayesInfo, prior_trunc, false);
% Do simulations in a loop and estimate recursively the mean and the variance.
for i = 1:ndraws
draw = o.draw();
m1 = m0 + (draw-m0)/i;
m2 = m1*m1';
v0 = v0 + ((draw*draw'-m2-v0) + (i-1)*(m0*m0'-m2'))/i;
m0 = m1;
end
t(1) = true;
catch
t(1) = false;
end
if t(1)
t(2) = all(abs(m0-BayesInfo.p1)<3e-3);
t(3) = all(all(abs(v0-diag(BayesInfo.p2.^2))<5e-3));
end
T = all(t);
%@eof:1

133
matlab/@dprior/draws.m Normal file
View File

@ -0,0 +1,133 @@
function P = draws(o, n)
% Return n independent random draws from the prior distribution.
%
% INPUTS
% - o [dprior]
%
% OUTPUTS
% - P [double] m×n matrix, random draw from the prior distribution.
%
% REMARKS
% If the Parallel Computing Toolbox is available, the main loop is run in parallel.
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> Prior.draws(1e6)
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
P = NaN(rows(o.lb), 1);
parfor i=1:n
P(:,i) = draw(o);
end
return % --*-- Unit tests --*--
%@test:1
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;
ndraws = 1e5;
% Call the tested routine
try
% Instantiate dprior object.
o = dprior(BayesInfo, prior_trunc, false);
X = o.draws(ndraws);
m = mean(X, 2);
v = var(X, 0, 2);
t(1) = true;
catch
t(1) = false;
end
if t(1)
t(2) = all(abs(m-BayesInfo.p1)<3e-3);
t(3) = all(all(abs(v-BayesInfo.p2.^2)<5e-3));
end
T = all(t);
%@eof:1

42
matlab/@dprior/mean.m Normal file
View File

@ -0,0 +1,42 @@
function m = mean(o, resetmoments)
% Return the prior mean.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior mean
%
% OUTPUTS
% - m [double] n×1 vector, prior mean
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<2
resetmoments = false;
end
if any(isnan(o.p1))
resetmoments = true;
end
if resetmoments
o.p1 = NaN(size(o.p1));
o.moments('mean');
end
m = o.p1;

42
matlab/@dprior/median.m Normal file
View File

@ -0,0 +1,42 @@
function m = median(o, resetmoments)
% Return the prior median.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior median
%
% OUTPUTS
% - m [double] n×1 vector, prior median
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<2
resetmoments = false;
end
if any(isnan(o.p11))
resetmoments = true;
end
if resetmoments
o.p11 = NaN(size(o.p11));
o.moments('median');
end
m = o.p11;

42
matlab/@dprior/mode.m Normal file
View File

@ -0,0 +1,42 @@
function m = mode(o, resetmoments)
% Return the prior mode.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior mode
%
% OUTPUTS
% - m [double] n×1 vector, prior mode
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<2
resetmoments = false;
end
if any(isnan(o.p5))
resetmoments = true;
end
if resetmoments
o.p5 = NaN(size(o.p5));
o.moments('mode');
end
m = o.p5;

291
matlab/@dprior/moments.m Normal file
View File

@ -0,0 +1,291 @@
function o = moments(o, name)
% Compute the prior moments.
%
% INPUTS
% - o [dprior]
%
% OUTPUTS
% - o [dprior]
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
switch name
case 'mean'
m = o.p1;
case 'median'
m = o.p11;
case 'std'
m = o.p2;
case 'mode'
m = o.p5;
otherwise
error('%s is not an implemented moemnt.', name)
end
id = isnan(m);
if any(id)
% For some parameters the prior mean is not defined.
% We compute the first order moment from the
% hyperparameters, if the hyperparameters are not
% available an error is thrown.
if o.isuniform
jd = intersect(o.iduniform, find(id));
if ~isempty(jd)
if any(isnan(o.p3(jd))) || any(isnan(o.p4(jd)))
error('dprior::mean: Some hyperparameters are missing (uniform distribution).')
end
switch name
case 'mean'
m(jd) = o.p3(jd) + .5*(o.p4(jd)-o.p3(jd));
case 'median'
m(jd) = o.p3(jd) + .5*(o.p4(jd)-o.p3(jd));
case 'std'
m(jd) = (o.p4(jd)-o.p3(jd))/sqrt(12);
case 'mode' % Actually we have a continuum of modes with the uniform distribution.
m(jd) = o.p3(jd) + .5*(o.p4(jd)-o.p3(jd));
end
end
end
if o.isgaussian
jd = intersect(o.idgaussian, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd)))
error('dprior::mean: Some hyperparameters are missing (gaussian distribution).')
end
switch name
case 'mean'
m(jd) = o.p6(jd);
case 'median'
m(jd) = o.p6(jd);
case 'std'
m(jd) = o.p7(jd);
case 'mode' % Actually we have a continuum of modes with the uniform distribution.
m(jd) = o.p6(jd);
end
end
end
if o.isgamma
jd = intersect(o.idgamma, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (gamma distribution).')
end
% α → o.p6, β → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + o.p6(jd).*o.p7(jd);
case 'median'
m(jd) = o.p3(jd) + gaminv(.5, o.p6(jd), o.p7(jda));
case 'std'
m(jd) = sqrt(o.p6(jd)).*o.p7(jd);
case 'mode'
m(jd) = 0;
hd = o.p6(jd)>1;
m(jd(hd)) = (o.p6(jd(hd))-1).*o.p7(jd(hd));
end
end
end
if o.isbeta
jd = intersect(o.idbeta, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd))) || any(isnan(o.p4(jd)))
error('dprior::mean: Some hyperparameters are missing (beta distribution).')
end
% α → o.p6, β → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + (o.p6(jd)./(o.p6(jd)+o.p7(jd))).*(o.p4(jd)-o.p3(jd));
case 'median'
m(jd) = o.p3(jd) + betainv(.5, o.p6(jd), o.p7(jd)).*(o.p4(jd)-o.p3(jd));
case 'std'
m(jd) = (o.p4(jd)-o.p3(jd)).*sqrt(o.p6(jd).*o.p7(jd)./((o.p6(jd)+o.p7(jd)).^2.*(o.p6(jd)+o.p7(jd)+1)));
case 'mode'
h0 = true(jd, 1);
h1 = o.p6(jd)<=1 & o.p7(jd)>1; h0 = h0 & ~h1;
h2 = o.p7(jd)<=1 & o.p6(jd)>1; h0 = h0 & ~h2;
h3 = o.p6(jd)<1 & o.p7(jd)<1; h0 = h0 & ~h3;
h4 = ismembertol(o.p6(jd), 1) & ismembertol(o.p7(jd),1); h0 = h0 & ~h4;
m(jd(h1)) = o.p3(jd(h1)); % Standard β has a mode at 0
m(jd(h2)) = o.p4(jd(h2)); % Standard β has a mode at 1
m(jd(h3)) = o.p3(jd(h3)); % Standard β is bimodal, we pick the lowest mode (0)
m(jd(h4)) = o.p3(jd(h4)) + .5*(o.p4(jd(h4))-o.p3(jd(h4))); % Standard β is the uniform distribution (continuum of modes), we pick the mean as the mode
m(jd(h0)) = o.p3(jd(h0))+(o.p4(jd(h0))-o.p3(jd(h0))).*((o.p6(jd(h0))-1)./(o.p6(jd(h0))+o.p7(jd(h0))-2)); % β distribution is concave and has a unique interior mode.
end
end
end
if o.isinvgamma1
jd = intersect(o.idinvgamma1, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (inverse gamma type 1 distribution).')
end
% s → o.p6, ν → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + sqrt(.5*o.p6(jd)) .*(gamma(.5*(o.p7(jd)-1))./gamma(.5*o.p7(jd)));
case 'median'
m(jd) = o.p3(jd) + 1.0/sqrt(gaminv(.5, o.p7(jd)/2.0, 2.0/o.p6(jd)));
case 'std'
m(jd) = sqrt( o.p6(jd)./(o.p7(jd)-2)-(.5*o.p6(jd)).*(gamma(.5*(o.p7(jd)-1))./gamma(.5*o.p7(jd))).^2);
case 'mode'
m(jd) = sqrt((o.p7(jd)-1)./o.p6(jd));
end
end
end
if o.isinvgamma2
jd = intersect(o.idinvgamma2, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (inverse gamma type 2 distribution).')
end
% s → o.p6, ν → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + o.p6(jd)./(o.p7(jd)-2);
case 'median'
m(jd) = o.p3(jd) + 1.0/gaminv(.5, o.p7(jd)/2.0, 2.0/o.p6(jd));
case 'std'
m(jd) = sqrt(2./(o.p7(jd)-4)).*o.p6(jd)./(o.p7(jd)-2);
case 'mode'
m(jd) = o.p6(jd)./(o.p7(jd)+2);
end
end
end
if o.isweibull
jd = intersect(o.idweibull, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (weibull distribution).')
end
% k → o.p6 (shape parameter), λ → o.p7 (scale parameter)
% See https://en.wikipedia.org/wiki/Weibull_distribution
switch name
case 'mean'
m(jd) = o.p3(jd) + o.p7(jd).*gamma(1+1./o.p6(jd));
case 'median'
m(jd) = o.p3(jd) + o.p7(jd).*log(2).^(1./o.p6(jd));
case 'std'
m(jd) = o.p7(jd).*sqrt(gamma(1+2./o.p6(jd))-gamma(1+1./o.p6(jd)).^2);
case 'mode'
m(jd) = 0;
hd = o.p6(jd)>1;
m(jd(hd)) = o.p3(jd(hd)) + o.p7(jd(hd)).*((o.p6(jd(hd))-1)./o.p6(jd(hd))).^(1./o.p6(jd(hd)));
end
end
end
switch name
case 'mean'
o.p1 = m;
case 'median'
o.p11 = m;
case 'std'
o.p2 = m;
case 'mode'
o.p5 = m;
end
end
return % --*-- Unit tests --*--
%@test:5
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;
% Call the tested routine
try
Prior = dprior(BayesInfo, prior_trunc, false);
t(1) = true;
catch
t(1) = false;
end
if t(1)
t(2) = all(Prior.mean()==.4);
t(3) = all(ismembertol(Prior.mean(true),.4));
t(4) = all(ismembertol(Prior.variance(),.04));
t(5) = all(ismembertol(Prior.variance(true),.04));
end
T = all(t);
%@eof:5

41
matlab/@dprior/subsref.m Normal file
View File

@ -0,0 +1,41 @@
function p = subsref(o, S)
% Overload subsref method.
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
switch S(1).type
case '.'
if ismember(S(1).subs, {'p1','p2','p3','p4','p5','p6','p7','lb','ub'})
p = builtin('subsref', o, S(1));
elseif ismember(S(1).subs, {'draw'})
p = feval(S(1).subs, o);
elseif ismember(S(1).subs, {'draws', 'density', 'densities', 'moments'})
p = feval(S(1).subs, o , S(2).subs{:});
elseif ismember(S(1).subs, {'mean', 'median', 'variance', 'mode'})
if (length(S)==2 && isempty(S(2).subs)) || length(S)==1
p = feval(S(1).subs, o);
else
p = feval(S(1).subs, o , S(2).subs{:});
end
else
error('dprior::subsref: unknown method (%s).', S(1).subs)
end
otherwise
error('dprior::subsref: %s indexing not implemented.', S(1).type)
end

42
matlab/@dprior/variance.m Normal file
View File

@ -0,0 +1,42 @@
function m = variance(o, resetmoments)
% Return the prior variance.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior variance
%
% OUTPUTS
% - m [double] n×1 vector, prior variance
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<2
resetmoments = false;
end
if any(isnan(o.p2))
resetmoments = true;
end
if resetmoments
o.p2 = NaN(size(o.p2));
o.moments('std');
end
m = o.p2.^2;

View File

@ -1,9 +1,18 @@
function [xparams,lpd,hessian_mat] = ...
maximize_prior_density(iparams, prior_shape, prior_hyperparameter_1, prior_hyperparameter_2, prior_inf_bound, prior_sup_bound,DynareOptions,DynareModel,BayesInfo,EstimatedParams,DynareResults)
function [xparams, lpd, hessian_mat] = ...
maximize_prior_density(iparams, names, DynareOptions, DynareModel, Prior, EstimatedParams, DynareResults)
% Maximizes the logged prior density using Chris Sims' optimization routine.
%
% INPUTS
% iparams [double] vector of initial parameters.
% - iparams [double] vector of initial parameters.
% - Prior [dprior] vector specifying prior densities shapes.
% - DynareOptions [struct] Options, AKA options_
% - DynareModel [struct] Model description, AKA M_
% - EstimatedParams [struct] Info about estimated parameters, AKA estimated_params_
% - DynareResults [struct] Results, AKA oo_
%
%
% prior_shape [integer] vector specifying prior densities shapes.
% prior_hyperparameter_1 [double] vector, first hyperparameter.
% prior_hyperparameter_2 [double] vector, second hyperparameter.
@ -32,10 +41,18 @@ function [xparams,lpd,hessian_mat] = ...
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
[xparams, lpd, exitflag, hessian_mat]=dynare_minimize_objective('minus_logged_prior_density', ...
iparams, DynareOptions.mode_compute, DynareOptions, [prior_inf_bound, prior_sup_bound], ...
BayesInfo.name, BayesInfo, [], ...
prior_shape, prior_hyperparameter_1, prior_hyperparameter_2, prior_inf_bound, prior_sup_bound, ...
DynareOptions,DynareModel,EstimatedParams,DynareResults);
[xparams, lpd, exitflag, hessian_mat] = dynare_minimize_objective('minus_logged_prior_density', ...
iparams, ...
DynareOptions.mode_compute, ...
DynareOptions, ...
[Prior.p3, Prior.p4], ...
BayesInfo.name, ...
[], ...
[], ...
Prior,
DynareOptions, ...
DynareModel, ...
EstimatedParams, ...
DynareResults);
lpd = -lpd;

View File

@ -1,19 +1,20 @@
function [fval,info,exit_flag,fake_1,fake_2] = minus_logged_prior_density(xparams,pshape,p6,p7,p3,p4,DynareOptions,DynareModel,EstimatedParams,DynareResults)
function [fval, info, exitflag, ~, ~] = minus_logged_prior_density(xparams, Prior, DynareOptions, DynareModel, EstimatedParams, DynareResults)
% Evaluates minus the logged prior density.
%
% INPUTS
% xparams [double] vector of parameters.
% pshape [integer] vector specifying prior densities shapes.
% p6 [double] vector, first hyperparameter.
% p7 [double] vector, second hyperparameter.
% p3 [double] vector, prior's lower bound.
% p4 [double] vector, prior's upper bound.
% - xparams [double] vector of parameters.
% - Prior [dprior] vector specifying prior densities shapes.
% - DynareOptions [struct] Options, AKA options_
% - DynareModel [struct] Model description, AKA M_
% - EstimatedParams [struct] Info about estimated parameters, AKA estimated_params_
% - DynareResults [struct] Results, AKA oo_
%
% OUTPUTS
% f [double] value of minus the logged prior density.
% info [double] vector: second entry stores penalty, first entry the error code.
%
% Copyright © 2009-2017 Dynare Team
% - fval [double] value of minus the logged prior density.
% - info [double] 4×1 vector, second entry stores penalty, first entry the error code, last entry a penalty (used for optimization).
% Copyright © 2009-2023 Dynare Team
%
% This file is part of Dynare.
%
@ -30,10 +31,7 @@ function [fval,info,exit_flag,fake_1,fake_2] = minus_logged_prior_density(xparam
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
fake_1 = 1;
fake_2 = 1;
exit_flag = 1;
exitflag = true;
info = zeros(4,1);
%------------------------------------------------------------------------------
@ -41,74 +39,75 @@ info = zeros(4,1);
%------------------------------------------------------------------------------
% Return, with endogenous penalty, if some parameters are smaller than the lower bound of the prior domain.
if ~isequal(DynareOptions.mode_compute,1) && any(xparams<p3)
k = find(xparams<p3);
if ~isequal(DynareOptions.mode_compute,1) && any(xparams<Prior.p3)
k = find(xparams<Prior.p3);
fval = Inf;
exit_flag = 0;
exitflag = false;
info(1) = 41;
info(4) = sum((p3(k)-xparams(k)).^2);
info(4) = sum((Prior.p3(k)-xparams(k)).^2);
return
end
% Return, with endogenous penalty, if some parameters are greater than the upper bound of the prior domain.
if ~isequal(DynareOptions.mode_compute,1) && any(xparams>p4)
k = find(xparams>p4);
if ~isequal(DynareOptions.mode_compute,1) && any(xparams>Prior.p4)
k = find(xparams>Prior.p4);
fval = Inf;
exit_flag = 0;
exitflag = false;
info(1) = 42;
info(4) = sum((xparams(k)-p4(k)).^2);
info(4) = sum((xparams(k)-Prior.p4(k)).^2);
return
end
% Get the diagonal elements of the covariance matrices for the structural innovations (Q) and the measurement error (H).
DynareModel = set_all_parameters(xparams,EstimatedParams,DynareModel);
DynareModel = set_all_parameters(xparams, EstimatedParams, DynareModel);
Q = DynareModel.Sigma_e;
H = DynareModel.H;
% Test if Q is positive definite.
if ~issquare(Q) || EstimatedParams.ncx || isfield(EstimatedParams,'calibrated_covariances')
if ~issquare(Q) || EstimatedParams.ncx || isfield(EstimatedParams, 'calibrated_covariances')
% Try to compute the cholesky decomposition of Q (possible iff Q is positive definite)
[Q_is_positive_definite, penalty] = ispd(Q);
if ~Q_is_positive_definite
% The variance-covariance matrix of the structural innovations is not definite positive. We have to compute the eigenvalues of this matrix in order to build the endogenous penalty.
% The variance-covariance matrix of the structural innovations is not definite positive. We have to compute the
% eigenvalues of this matrix in order to build the endogenous penalty.
fval = Inf;
exit_flag = 0;
exitflag = false;
info(1) = 43;
info(4) = penalty;
return
end
if isfield(EstimatedParams,'calibrated_covariances')
correct_flag=check_consistency_covariances(Q);
if isfield(EstimatedParams, 'calibrated_covariances')
correct_flag = check_consistency_covariances(Q);
if ~correct_flag
penalty = sum(Q(EstimatedParams.calibrated_covariances.position).^2);
fval = Inf;
exit_flag = 0;
exitflag = false;
info(1) = 71;
info(4) = penalty;
return
end
end
end
% Test if H is positive definite.
if ~issquare(H) || EstimatedParams.ncn || isfield(EstimatedParams,'calibrated_covariances_ME')
if ~issquare(H) || EstimatedParams.ncn || isfield(EstimatedParams, 'calibrated_covariances_ME')
[H_is_positive_definite, penalty] = ispd(H);
if ~H_is_positive_definite
% The variance-covariance matrix of the measurement errors is not definite positive. We have to compute the eigenvalues of this matrix in order to build the endogenous penalty.
% The variance-covariance matrix of the measurement errors is not definite positive. We have to compute the eigenvalues
% of this matrix in order to build the endogenous penalty.
fval = Inf;
exit_flag = 0;
exitflag = false;
info(1) = 44;
info(4) = penalty;
return
end
if isfield(EstimatedParams,'calibrated_covariances_ME')
correct_flag=check_consistency_covariances(H);
if isfield(EstimatedParams, 'calibrated_covariances_ME')
correct_flag = check_consistency_covariances(H);
if ~correct_flag
penalty = sum(H(EstimatedParams.calibrated_covariances_ME.position).^2);
fval = Inf;
exit_flag = 0;
exitflag = false;
info(1) = 72;
info(4) = penalty;
return
@ -121,8 +120,7 @@ end
% 2. Check BK and steady state
%-----------------------------
M_ = set_all_parameters(xparams,EstimatedParams,DynareModel);
[dr,info,DynareModel,DynareResults] = resol(0,DynareModel,DynareOptions,DynareResults);
[dr, info, DynareModel, DynareResults] = resol(0, DynareModel, DynareOptions, DynareResults);
% Return, with endogenous penalty when possible, if dynare_resolve issues an error code (defined in resol).
if info(1)
@ -132,16 +130,14 @@ if info(1)
%meaningful second entry of output that can be used
fval = Inf;
info(4) = info(2);
exit_flag = 0;
exitflag = false;
return
else
fval = Inf;
info(4) = 0.1;
exit_flag = 0;
exitflag = false;
return
end
end
fval = - priordens(xparams,pshape,p6,p7,p3,p4);
fval = - Prior.density(xparams);

View File

@ -1,4 +1,4 @@
function optimize_prior(DynareOptions, ModelInfo, DynareResults, BayesInfo, EstimationInfo)
function optimize_prior(DynareOptions, ModelInfo, DynareResults, BayesInfo, EstimationInfo, pnames)
% This routine computes the mode of the prior density using an optimization algorithm.
@ -19,24 +19,25 @@ function optimize_prior(DynareOptions, ModelInfo, DynareResults, BayesInfo, Esti
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
DynareResults.dr = set_state_space(DynareResults.dr, ModelInfo, DynareOptions);
% Initialize to the prior mean
DynareResults.dr = set_state_space(DynareResults.dr,ModelInfo,DynareOptions);
xparam1 = BayesInfo.p1;
xparam1 = Prior.p1;
% Pertubation of the initial condition.
look_for_admissible_initial_condition = 1; scale = 1.0; iter = 0;
look_for_admissible_initial_condition = true; scale = 1.0; iter = 0;
while look_for_admissible_initial_condition
xinit = xparam1+scale*randn(size(xparam1));
if all(xinit(:)>BayesInfo.p3) && all(xinit(:)<BayesInfo.p4)
ModelInfo = set_all_parameters(xinit,EstimationInfo,ModelInfo);
[dr,INFO,ModelInfo,DynareResults] = resol(0,ModelInfo,DynareOptions,DynareResults);
if all(xinit>Prior.p3) && all(xinit<Prior.p4)
ModelInfo = set_all_parameters(xinit, EstimationInfo, ModelInfo);
[dr, INFO, ModelInfo, DynareResults] = resol(0, ModelInfo, DynareOptions, DynareResults);
if ~INFO(1)
look_for_admissible_initial_condition = 0;
look_for_admissible_initial_condition = false;
end
else
if iter == 2000
if iter==2000
scale = scale/1.1;
iter = 0;
iter = 0;
else
iter = iter+1;
end
@ -45,23 +46,19 @@ end
% Maximization of the prior density
[xparams, lpd, hessian_mat] = ...
maximize_prior_density(xinit, BayesInfo.pshape, ...
BayesInfo.p6, ...
BayesInfo.p7, ...
BayesInfo.p3, ...
BayesInfo.p4,DynareOptions,ModelInfo,BayesInfo,EstimationInfo,DynareResults);
maximize_prior_density(xinit, pnames, DynareOptions, ModelInfo, Prior, EstimationInfo, DynareResults);
% Display the results.
% Display results.
skipline(2)
disp('------------------')
disp('PRIOR OPTIMIZATION')
disp('------------------')
skipline()
for i = 1:length(xparams)
disp(['deep parameter ' int2str(i) ': ' get_the_name(i,0,ModelInfo,EstimationInfo,DynareOptions) '.'])
disp([' Initial condition ....... ' num2str(xinit(i)) '.'])
disp([' Prior mode .............. ' num2str(BayesInfo.p5(i)) '.'])
disp([' Optimized prior mode .... ' num2str(xparams(i)) '.'])
dprintf('deep parameter %u: %s.', i, get_the_name(i, 0, ModelInfo, EstimationInfo, DynareOptions))
dprintf(' Initial condition ........ %s.', num2str(xinit(i)))
dprintf(' Prior mode ............... %s.', num2str(Prior.p5(i)))
dprintf(' Optimized prior mode ..... %s.', num2str(xparams(i)))
skipline()
end
skipline()
skipline()

View File

@ -1,51 +1,14 @@
function bounds = prior_bounds(bayestopt, prior_trunc)
%@info:
%! @deftypefn {Function File} {@var{bounds} =} prior_bounds (@var{bayesopt},@var{option})
%! @anchor{prior_bounds}
%! @sp 1
%! Returns bounds for the prior densities. For each estimated parameter the lower and upper bounds
%! are such that the defined intervals contains a probability mass equal to 1-2*@var{option}.prior_trunc. The
%! default value for @var{option}.prior_trunc is 1e-10 (set in @ref{global_initialization}).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item bayestopt
%! Matlab's structure describing the prior distribution (initialized by @code{dynare}).
%! @item option
%! Matlab's structure describing the options (initialized by @code{dynare}).
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item bounds
%! A structure with two fields lb and up (p*1 vectors of doubles, where p is the number of estimated parameters) for the lower and upper bounds.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{get_prior_info}, @ref{dynare_estimation_1}, @ref{dynare_estimation_init}
%! @sp 2
%! @strong{This function calls:}
%! @sp 1
%! None.
%! @end deftypefn
%@eod:
function bounds = prior_bounds(bayestopt, priortrunc)
% function bounds = prior_bounds(bayestopt)
% computes bounds for prior density.
%
% INPUTS
% bayestopt [structure] characterizing priors (shape, mean, p1..p4)
% - bayestopt [struct] characterizing priors (shape, mean, p1..p4)
% - priortrunc [double] scalar, probability mass in the tails to be removed
%
% OUTPUTS
% bounds [double] structure specifying prior bounds (lb and ub fields)
%
% SPECIAL REQUIREMENTS
% none
% - bounds [struct] prior bounds (lb, lower bounds, and ub, upper bounds, fields are n×1 vectors)
% Copyright © 2003-2023 Dynare Team
%
@ -64,74 +27,78 @@ function bounds = prior_bounds(bayestopt, prior_trunc)
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<2, priortrunc = 0.0; end
assert(priortrunc>=0 && priortrunc<=1, 'Second input argument must be non negative and not larger than one.')
pshape = bayestopt.pshape;
p3 = bayestopt.p3;
p4 = bayestopt.p4;
p6 = bayestopt.p6;
p7 = bayestopt.p7;
bounds.lb = zeros(length(p6),1);
bounds.ub = zeros(length(p6),1);
bounds.lb = zeros(size(p6));
bounds.ub = zeros(size(p6));
for i=1:length(p6)
switch pshape(i)
case 1
if prior_trunc == 0
if priortrunc==0
bounds.lb(i) = p3(i);
bounds.ub(i) = p4(i);
else
bounds.lb(i) = betainv(prior_trunc,p6(i),p7(i))*(p4(i)-p3(i))+p3(i);
bounds.ub(i) = betainv(1-prior_trunc,p6(i),p7(i))*(p4(i)-p3(i))+p3(i);
bounds.lb(i) = betainv(priortrunc, p6(i), p7(i))*(p4(i)-p3(i))+p3(i);
bounds.ub(i) = betainv(1.0-priortrunc, p6(i), p7(i))*(p4(i)-p3(i))+p3(i);
end
case 2
if prior_trunc == 0
if priortrunc==0
bounds.lb(i) = p3(i);
bounds.ub(i) = Inf;
else
bounds.lb(i) = gaminv(prior_trunc,p6(i),p7(i))+p3(i);
bounds.ub(i) = gaminv(1-prior_trunc,p6(i),p7(i))+p3(i);
bounds.lb(i) = gaminv(priortrunc, p6(i), p7(i))+p3(i);
bounds.ub(i) = gaminv(1.0-priortrunc, p6(i), p7(i))+p3(i);
end
case 3
if prior_trunc == 0
if priortrunc==0
bounds.lb(i) = -Inf;
bounds.ub(i) = Inf;
else
bounds.lb(i) = norminv(prior_trunc,p6(i),p7(i));
bounds.ub(i) = norminv(1-prior_trunc,p6(i),p7(i));
bounds.lb(i) = norminv(priortrunc, p6(i), p7(i));
bounds.ub(i) = norminv(1.0-priortrunc, p6(i), p7(i));
end
case 4
if prior_trunc == 0
if priortrunc==0
bounds.lb(i) = p3(i);
bounds.ub(i) = Inf;
else
bounds.lb(i) = 1/sqrt(gaminv(1-prior_trunc, p7(i)/2, 2/p6(i)))+p3(i);
bounds.ub(i) = 1/sqrt(gaminv(prior_trunc, p7(i)/2, 2/p6(i)))+p3(i);
bounds.lb(i) = 1.0/sqrt(gaminv(1.0-priortrunc, p7(i)/2.0, 2.0/p6(i)))+p3(i);
bounds.ub(i) = 1.0/sqrt(gaminv(priortrunc, p7(i)/2.0, 2.0/p6(i)))+p3(i);
end
case 5
if prior_trunc == 0
if priortrunc == 0
bounds.lb(i) = p6(i);
bounds.ub(i) = p7(i);
else
bounds.lb(i) = p6(i)+(p7(i)-p6(i))*prior_trunc;
bounds.ub(i) = p7(i)-(p7(i)-p6(i))*prior_trunc;
bounds.lb(i) = p6(i)+(p7(i)-p6(i))*priortrunc;
bounds.ub(i) = p7(i)-(p7(i)-p6(i))*priortrunc;
end
case 6
if prior_trunc == 0
if priortrunc == 0
bounds.lb(i) = p3(i);
bounds.ub(i) = Inf;
else
bounds.lb(i) = 1/gaminv(1-prior_trunc, p7(i)/2, 2/p6(i))+p3(i);
bounds.ub(i) = 1/gaminv(prior_trunc, p7(i)/2, 2/p6(i))+ p3(i);
bounds.lb(i) = 1.0/gaminv(1.0-priortrunc, p7(i)/2.0, 2.0/p6(i))+p3(i);
bounds.ub(i) = 1.0/gaminv(priortrunc, p7(i)/2.0, 2.0/p6(i))+ p3(i);
end
case 8
if prior_trunc == 0
if priortrunc == 0
bounds.lb(i) = p3(i);
bounds.ub(i) = Inf;
else
bounds.lb(i) = p3(i)+wblinv(prior_trunc,p6(i),p7(i));
bounds.ub(i) = p3(i)+wblinv(1-prior_trunc,p6(i),p7(i));
bounds.lb(i) = p3(i)+wblinv(priortrunc, p6(i), p7(i));
bounds.ub(i) = p3(i)+wblinv(1.0-priortrunc, p6(i), p7(i));
end
otherwise
error(sprintf('prior_bounds: unknown distribution shape (index %d, type %d)', i, pshape(i)));
end
end
end

59
matlab/substitute.m Normal file
View File

@ -0,0 +1,59 @@
function v = substitute(v, i, x)
% Substitute a scalar in a vector.
%
% INPUTS
% - v [double] m×1 vector
% - i [integer] scalar, index for the scalar to be replaced
% - x [double] scalar or 1×n vector.
%
% OUTPUTS
% - v [double] m×1 vector or m×n matrix (with substituted value(s))
%
% REMARKS
% If x is a vector with n elements, then n substitutions are performed (returning n updated vectors in a matrix with n columns)
%
% EXAMPLES
% >> v = ones(2,1);
% >> substitude(v, 1, 0)
%
% ans = %
%
% 0
%
% 1
%
% >> substitute(v, 1, [3 4])
%
% ans =
%
% 3 4
% 1 1
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
assert(isvector(v), 'First input argument must be a vector.')
assert(isvector(x), 'Last input argument must be a scalar or a vector.')
assert(isscalar(i) && isint(i) && i>0 && i<=length(v), 'Second input argument must be a scalar integer')
if length(x)==1
v(i) = x;
else
v = repmat(v, 1, length(x));
v(i,:) = x;
end