Bug correction (condition info==19 was not used in DsgeLikelihood and DsgeVarLikelihood).

git-svn-id: https://www.dynare.org/svn/dynare/trunk@2667 ac1d8469-bf42-47a9-8791-bf33cf982152
time-shift
stepan 2009-05-12 11:38:06 +00:00
parent 74a2ffcd95
commit ec4b45cc7c
2 changed files with 245 additions and 244 deletions

View File

@ -131,8 +131,8 @@ function [fval,cost_flag,ys,trend_coeff,info] = DsgeLikelihood(xparam1,gend,data
fval = bayestopt_.penalty+1;
cost_flag = 0;
return
elseif info(1) == 3 || info(1) == 4 || info(1) == 20 || info(1) == 21
fval = bayestopt_.penalty+info(2);%^2; % penalty power raised in DR1.m and resol already. GP July'08
elseif info(1) == 3 || info(1) == 4 || info(1) == 19 || info(1) == 20 || info(1) == 21
fval = bayestopt_.penalty+info(2);
cost_flag = 0;
return
end

View File

@ -1,243 +1,244 @@
function [fval,cost_flag,info,PHI,SIGMAu,iXX,prior] = DsgeVarLikelihood(xparam1,gend)
% function [fval,cost_flag,info,PHI,SIGMAu,iXX] = DsgeVarLikelihood(xparam1,gend)
% Evaluates the posterior kernel of the bvar-dsge model.
%
% INPUTS
% o xparam1 [double] Vector of model's parameters.
% o gend [integer] Number of observations (without conditionning observations for the lags).
%
% OUTPUTS
% o fval [double] Value of the posterior kernel at xparam1.
% o cost_flag [integer] Zero if the function returns a penalty, one otherwise.
% o info [integer] Vector of informations about the penalty.
% o PHI [double] Stacked BVAR-DSGE autoregressive matrices (at the mode associated to xparam1).
% o SIGMAu [double] Covariance matrix of the BVAR-DSGE (at the mode associated to xparam1).
% o iXX [double] inv(X'X).
% o prior [double] a matlab structure describing the dsge-var prior.
%
% SPECIAL REQUIREMENTS
% None.
% Copyright (C) 2006-2008 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global bayestopt_ estim_params_ M_ options_
nvx = estim_params_.nvx;
nvn = estim_params_.nvn;
ncx = estim_params_.ncx;
ncn = estim_params_.ncn;
np = estim_params_.np;
nx = nvx+nvn+ncx+ncn+np;
ns = nvx+nvn+ncx+ncn;
NumberOfObservedVariables = size(options_.varobs,1);
NumberOfLags = options_.varlag;
NumberOfParameters = NumberOfObservedVariables*NumberOfLags ;
if ~options_.noconstant
NumberOfParameters = NumberOfParameters + 1;
end
mYY = evalin('base', 'mYY');
mYX = evalin('base', 'mYX');
mXY = evalin('base', 'mXY');
mXX = evalin('base', 'mXX');
fval = [];
cost_flag = 1;
if options_.mode_compute ~= 1 & any(xparam1 < bayestopt_.lb)
k = find(xparam1 < bayestopt_.lb);
fval = bayestopt_.penalty+sum((bayestopt_.lb(k)-xparam1(k)).^2);
cost_flag = 0;
info = 41;
return;
end
if options_.mode_compute ~= 1 & any(xparam1 > bayestopt_.ub)
k = find(xparam1 > bayestopt_.ub);
fval = bayestopt_.penalty+sum((xparam1(k)-bayestopt_.ub(k)).^2);
cost_flag = 0;
info = 42;
return;
end
Q = M_.Sigma_e;
for i=1:estim_params_.nvx
k = estim_params_.var_exo(i,1);
Q(k,k) = xparam1(i)*xparam1(i);
end
offset = estim_params_.nvx;
if estim_params_.nvn
disp('DsgeVarLikelihood :: Measurement errors are implemented!')
return
end
if estim_params_.ncx
disp('DsgeVarLikelihood :: Correlated structural innovations are not implemented!')
return
end
M_.params(estim_params_.param_vals(:,1)) = xparam1(offset+1:end);
M_.Sigma_e = Q;
%% Weight of the dsge prior:
dsge_prior_weight = M_.params(strmatch('dsge_prior_weight',M_.param_names));
% Is the DSGE prior proper?
if dsge_prior_weight<(NumberOfParameters+NumberOfObservedVariables)/gend;
fval = bayestopt_.penalty+abs(gend*dsge_prior_weight-(NumberOfParameters+NumberOfObservedVariables));
cost_flag = 0;
info = 51;
return;
end
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
[T,R,SteadyState,info] = dynare_resolve(bayestopt_.restrict_var_list,...
bayestopt_.restrict_columns,...
bayestopt_.restrict_aux);
if info(1) == 1 | info(1) == 2 | info(1) == 5
fval = bayestopt_.penalty+1;
cost_flag = 0;
return
elseif info(1) == 3 | info(1) == 4 | info(1) == 20
fval = bayestopt_.penalty+info(2)^2;
cost_flag = 0;
return
end
if ~options_.noconstant
if options_.loglinear
constant = transpose(log(SteadyState(bayestopt_.mfys)));
else
constant = transpose(SteadyState(bayestopt_.mfys));
end
else
constant = zeros(1,NumberOfObservedVariables);
end
if bayestopt_.with_trend == 1
disp('DsgeVarLikelihood :: Linear trend is not yet implemented!')
return
end
%------------------------------------------------------------------------------
% 3. theoretical moments (second order)
%------------------------------------------------------------------------------
tmp0 = lyapunov_symm(T,R*Q*R',options_.qz_criterium,options_.lyapunov_complex_threshold);% I compute the variance-covariance matrix
mf = bayestopt_.mf1; % of the restricted state vector.
% Get the non centered second order moments
TheoreticalAutoCovarianceOfTheObservedVariables = ...
zeros(NumberOfObservedVariables,NumberOfObservedVariables,NumberOfLags+1);
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1) = tmp0(mf,mf)+constant'*constant;
for lag = 1:NumberOfLags
tmp0 = T*tmp0;
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,lag+1) = tmp0(mf,mf) ...
+ constant'*constant;
end
% Build the theoretical "covariance" between Y and X
GYX = zeros(NumberOfObservedVariables,NumberOfParameters);
for i=1:NumberOfLags
GYX(:,(i-1)*NumberOfObservedVariables+1:i*NumberOfObservedVariables) = ...
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1);
end
if ~options_.noconstant
GYX(:,end) = constant';
end
% Build the theoretical "covariance" between X and X
GXX = kron(eye(NumberOfLags), ...
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1));
for i = 1:NumberOfLags-1
tmp1 = diag(ones(NumberOfLags-i,1),i);
tmp2 = diag(ones(NumberOfLags-i,1),-i);
GXX = GXX + kron(tmp1,TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1));
GXX = GXX + kron(tmp2,TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1)');
end
if ~options_.noconstant
% Add one row and one column to GXX
GXX = [GXX , kron(ones(NumberOfLags,1),constant') ; [ kron(ones(1,NumberOfLags),constant) , 1] ];
end
GYY = TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1);
assignin('base','GYY',GYY);
assignin('base','GXX',GXX);
assignin('base','GYX',GYX);
if ~isinf(dsge_prior_weight)
tmp0 = dsge_prior_weight*gend*TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1) + mYY ;
tmp1 = dsge_prior_weight*gend*GYX + mYX;
tmp2 = inv(dsge_prior_weight*gend*GXX+mXX);
SIGMAu = tmp0 - tmp1*tmp2*tmp1'; clear('tmp0');
if ~ispd(SIGMAu)
v = diag(SIGMAu);
k = find(v<0);
fval = bayestopt_.penalty + sum(v(k).^2);
info = 52;
cost_flag = 0;
return;
end
SIGMAu = SIGMAu / (gend*(1+dsge_prior_weight));
PHI = tmp2*tmp1'; clear('tmp1');
prodlng1 = sum(gammaln(.5*((1+dsge_prior_weight)*gend- ...
NumberOfObservedVariables*NumberOfLags ...
+1-(1:NumberOfObservedVariables)')));
prodlng2 = sum(gammaln(.5*(dsge_prior_weight*gend- ...
NumberOfObservedVariables*NumberOfLags ...
+1-(1:NumberOfObservedVariables)')));
lik = .5*NumberOfObservedVariables*log(det(dsge_prior_weight*gend*GXX+mXX)) ...
+ .5*((dsge_prior_weight+1)*gend-NumberOfParameters)*log(det((dsge_prior_weight+1)*gend*SIGMAu)) ...
- .5*NumberOfObservedVariables*log(det(dsge_prior_weight*gend*GXX)) ...
- .5*(dsge_prior_weight*gend-NumberOfParameters)*log(det(dsge_prior_weight*gend*(GYY-GYX*inv(GXX)*GYX'))) ...
+ .5*NumberOfObservedVariables*gend*log(2*pi) ...
- .5*log(2)*NumberOfObservedVariables*((dsge_prior_weight+1)*gend-NumberOfParameters) ...
+ .5*log(2)*NumberOfObservedVariables*(dsge_prior_weight*gend-NumberOfParameters) ...
- prodlng1 + prodlng2;
else
iGXX = inv(GXX);
SIGMAu = GYY - GYX*iGXX*transpose(GYX);
PHI = iGXX*transpose(GYX);
lik = gend * ( log(det(SIGMAu)) + NumberOfObservedVariables*log(2*pi) + ...
trace(inv(SIGMAu)*(mYY - transpose(mYX*PHI) - mYX*PHI + transpose(PHI)*mXX*PHI)/gend));
lik = .5*lik;% Minus likelihood
end
lnprior = priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
fval = (lik-lnprior);
if (nargout == 6)
if isinf(dsge_prior_weight)
iXX = iGXX;
else
iXX = tmp2;
end
end
if (nargout==7)
if isinf(dsge_prior_weight)
iXX = iGXX;
else
iXX = tmp2;
end
iGXX = inv(GXX);
prior.SIGMAstar = GYY - GYX*iGXX*GYX';
prior.PHIstar = iGXX*transpose(GYX);
prior.ArtificialSampleSize = fix(dsge_prior_weight*gend);
prior.DF = prior.ArtificialSampleSize - NumberOfParameters - NumberOfObservedVariables;
prior.iGXX = iGXX;
function [fval,cost_flag,info,PHI,SIGMAu,iXX,prior] = DsgeVarLikelihood(xparam1,gend)
% function [fval,cost_flag,info,PHI,SIGMAu,iXX] = DsgeVarLikelihood(xparam1,gend)
% Evaluates the posterior kernel of the bvar-dsge model.
%
% INPUTS
% o xparam1 [double] Vector of model's parameters.
% o gend [integer] Number of observations (without conditionning observations for the lags).
%
% OUTPUTS
% o fval [double] Value of the posterior kernel at xparam1.
% o cost_flag [integer] Zero if the function returns a penalty, one otherwise.
% o info [integer] Vector of informations about the penalty.
% o PHI [double] Stacked BVAR-DSGE autoregressive matrices (at the mode associated to xparam1).
% o SIGMAu [double] Covariance matrix of the BVAR-DSGE (at the mode associated to xparam1).
% o iXX [double] inv(X'X).
% o prior [double] a matlab structure describing the dsge-var prior.
%
% SPECIAL REQUIREMENTS
% None.
% Copyright (C) 2006-2008 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global bayestopt_ estim_params_ M_ options_
nvx = estim_params_.nvx;
nvn = estim_params_.nvn;
ncx = estim_params_.ncx;
ncn = estim_params_.ncn;
np = estim_params_.np;
nx = nvx+nvn+ncx+ncn+np;
ns = nvx+nvn+ncx+ncn;
NumberOfObservedVariables = size(options_.varobs,1);
NumberOfLags = options_.varlag;
NumberOfParameters = NumberOfObservedVariables*NumberOfLags ;
if ~options_.noconstant
NumberOfParameters = NumberOfParameters + 1;
end
mYY = evalin('base', 'mYY');
mYX = evalin('base', 'mYX');
mXY = evalin('base', 'mXY');
mXX = evalin('base', 'mXX');
fval = [];
cost_flag = 1;
if options_.mode_compute ~= 1 & any(xparam1 < bayestopt_.lb)
k = find(xparam1 < bayestopt_.lb);
fval = bayestopt_.penalty+sum((bayestopt_.lb(k)-xparam1(k)).^2);
cost_flag = 0;
info = 41;
return;
end
if options_.mode_compute ~= 1 & any(xparam1 > bayestopt_.ub)
k = find(xparam1 > bayestopt_.ub);
fval = bayestopt_.penalty+sum((xparam1(k)-bayestopt_.ub(k)).^2);
cost_flag = 0;
info = 42;
return;
end
Q = M_.Sigma_e;
for i=1:estim_params_.nvx
k = estim_params_.var_exo(i,1);
Q(k,k) = xparam1(i)*xparam1(i);
end
offset = estim_params_.nvx;
if estim_params_.nvn
disp('DsgeVarLikelihood :: Measurement errors are implemented!')
return
end
if estim_params_.ncx
disp('DsgeVarLikelihood :: Correlated structural innovations are not implemented!')
return
end
M_.params(estim_params_.param_vals(:,1)) = xparam1(offset+1:end);
M_.Sigma_e = Q;
%% Weight of the dsge prior:
dsge_prior_weight = M_.params(strmatch('dsge_prior_weight',M_.param_names));
% Is the DSGE prior proper?
if dsge_prior_weight<(NumberOfParameters+NumberOfObservedVariables)/gend;
fval = bayestopt_.penalty+abs(gend*dsge_prior_weight-(NumberOfParameters+NumberOfObservedVariables));
cost_flag = 0;
info = 51;
return;
end
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
[T,R,SteadyState,info] = dynare_resolve(bayestopt_.restrict_var_list,...
bayestopt_.restrict_columns,...
bayestopt_.restrict_aux);
if info(1) == 1 || info(1) == 2 || info(1) == 5
fval = bayestopt_.penalty+1;
cost_flag = 0;
return
elseif info(1) == 3 || info(1) == 4 || info(1) == 19 || info(1) == 20 || info(1) == 21
fval = bayestopt_.penalty+info(2);
cost_flag = 0;
return
end
if ~options_.noconstant
if options_.loglinear
constant = transpose(log(SteadyState(bayestopt_.mfys)));
else
constant = transpose(SteadyState(bayestopt_.mfys));
end
else
constant = zeros(1,NumberOfObservedVariables);
end
if bayestopt_.with_trend == 1
disp('DsgeVarLikelihood :: Linear trend is not yet implemented!')
return
end
%------------------------------------------------------------------------------
% 3. theoretical moments (second order)
%------------------------------------------------------------------------------
tmp0 = lyapunov_symm(T,R*Q*R',options_.qz_criterium,options_.lyapunov_complex_threshold);% I compute the variance-covariance matrix
mf = bayestopt_.mf1; % of the restricted state vector.
% Get the non centered second order moments
TheoreticalAutoCovarianceOfTheObservedVariables = ...
zeros(NumberOfObservedVariables,NumberOfObservedVariables,NumberOfLags+1);
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1) = tmp0(mf,mf)+constant'*constant;
for lag = 1:NumberOfLags
tmp0 = T*tmp0;
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,lag+1) = tmp0(mf,mf) ...
+ constant'*constant;
end
% Build the theoretical "covariance" between Y and X
GYX = zeros(NumberOfObservedVariables,NumberOfParameters);
for i=1:NumberOfLags
GYX(:,(i-1)*NumberOfObservedVariables+1:i*NumberOfObservedVariables) = ...
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1);
end
if ~options_.noconstant
GYX(:,end) = constant';
end
% Build the theoretical "covariance" between X and X
GXX = kron(eye(NumberOfLags), ...
TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1));
for i = 1:NumberOfLags-1
tmp1 = diag(ones(NumberOfLags-i,1),i);
tmp2 = diag(ones(NumberOfLags-i,1),-i);
GXX = GXX + kron(tmp1,TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1));
GXX = GXX + kron(tmp2,TheoreticalAutoCovarianceOfTheObservedVariables(:,:,i+1)');
end
if ~options_.noconstant
% Add one row and one column to GXX
GXX = [GXX , kron(ones(NumberOfLags,1),constant') ; [ kron(ones(1,NumberOfLags),constant) , 1] ];
end
GYY = TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1);
assignin('base','GYY',GYY);
assignin('base','GXX',GXX);
assignin('base','GYX',GYX);
if ~isinf(dsge_prior_weight)
tmp0 = dsge_prior_weight*gend*TheoreticalAutoCovarianceOfTheObservedVariables(:,:,1) + mYY ;
tmp1 = dsge_prior_weight*gend*GYX + mYX;
tmp2 = inv(dsge_prior_weight*gend*GXX+mXX);
SIGMAu = tmp0 - tmp1*tmp2*tmp1'; clear('tmp0');
if ~ispd(SIGMAu)
v = diag(SIGMAu);
k = find(v<0);
fval = bayestopt_.penalty + sum(v(k).^2);
info = 52;
cost_flag = 0;
return;
end
SIGMAu = SIGMAu / (gend*(1+dsge_prior_weight));
PHI = tmp2*tmp1'; clear('tmp1');
prodlng1 = sum(gammaln(.5*((1+dsge_prior_weight)*gend- ...
NumberOfObservedVariables*NumberOfLags ...
+1-(1:NumberOfObservedVariables)')));
prodlng2 = sum(gammaln(.5*(dsge_prior_weight*gend- ...
NumberOfObservedVariables*NumberOfLags ...
+1-(1:NumberOfObservedVariables)')));
lik = .5*NumberOfObservedVariables*log(det(dsge_prior_weight*gend*GXX+mXX)) ...
+ .5*((dsge_prior_weight+1)*gend-NumberOfParameters)*log(det((dsge_prior_weight+1)*gend*SIGMAu)) ...
- .5*NumberOfObservedVariables*log(det(dsge_prior_weight*gend*GXX)) ...
- .5*(dsge_prior_weight*gend-NumberOfParameters)*log(det(dsge_prior_weight*gend*(GYY-GYX*inv(GXX)*GYX'))) ...
+ .5*NumberOfObservedVariables*gend*log(2*pi) ...
- .5*log(2)*NumberOfObservedVariables*((dsge_prior_weight+1)*gend-NumberOfParameters) ...
+ .5*log(2)*NumberOfObservedVariables*(dsge_prior_weight*gend-NumberOfParameters) ...
- prodlng1 + prodlng2;
else
iGXX = inv(GXX);
SIGMAu = GYY - GYX*iGXX*transpose(GYX);
PHI = iGXX*transpose(GYX);
lik = gend * ( log(det(SIGMAu)) + NumberOfObservedVariables*log(2*pi) + ...
trace(inv(SIGMAu)*(mYY - transpose(mYX*PHI) - mYX*PHI + transpose(PHI)*mXX*PHI)/gend));
lik = .5*lik;% Minus likelihood
end
lnprior = priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
fval = (lik-lnprior);
if (nargout == 6)
if isinf(dsge_prior_weight)
iXX = iGXX;
else
iXX = tmp2;
end
end
if (nargout==7)
if isinf(dsge_prior_weight)
iXX = iGXX;
else
iXX = tmp2;
end
iGXX = inv(GXX);
prior.SIGMAstar = GYY - GYX*iGXX*GYX';
prior.PHIstar = iGXX*transpose(GYX);
prior.ArtificialSampleSize = fix(dsge_prior_weight*gend);
prior.DF = prior.ArtificialSampleSize - NumberOfParameters - NumberOfObservedVariables;
prior.iGXX = iGXX;
end