Cholesky decomposition: only add to diagonal if really necessary

Closes #1891
remove-submodule
Johannes Pfeifer 2023-06-23 09:57:17 -04:00
parent ed7fe89bfa
commit d386bb9f76
7 changed files with 102 additions and 16 deletions

View File

@ -177,11 +177,10 @@ while fpar<B
error(['PosteriorIRF :: Dynare is unable to solve the model (' errordef ') with sample ' type])
end
end
SS = M_.Sigma_e+1e-14*eye(M_.exo_nbr);
SS = transpose(chol(SS));
SS = get_lower_cholesky_covariance(M_.Sigma_e,options_.add_tiny_number_to_cholesky);
irf_shocks_indx = getIrfShocksIndx(M_, options_);
for i=irf_shocks_indx
if SS(i,i) > 1e-13
if SS(i,i) > 5e-7
if options_.order>1 && options_.relative_irf % normalize shock to 0.01 before IRF generation for GIRFs; multiply with 100 later
y=irf(M_,options_,dr,SS(:,i)./SS(i,i)/100, options_.irf, options_.drop,options_.replic,options_.order);
else

View File

@ -85,8 +85,7 @@ end
% Get the covariance matrix of the shocks.
if withuncertainty
Sigma = M_.Sigma_e + 1e-14*eye(M_.exo_nbr);
sigma = transpose(chol(Sigma));
sigma = get_lower_cholesky_covariance(M_.Sigma_e,options_.add_tiny_number_to_cholesky);
end
% Compute forecast without shock

View File

@ -146,10 +146,8 @@ end
if ~deterministicshockflag
if nnz(M_.Sigma_e)
% Add ϵ>0 on the diagonal, so that the Cholesky won't fail
% if a shock has zero variance
Sigma = M_.Sigma_e + 1e-14*eye(M_.exo_nbr);
% Factorize Sigma (C is such that C*C' == Sigma)
C = chol(Sigma, 'lower');
% if a shock has zero variance and factorize Sigma (C is such that C*C' == Sigma)
C = get_lower_cholesky_covariance(M_.Sigma_e,options_.add_tiny_number_to_cholesky);
else
error('You did not specify the size of the shocks!')
end

View File

@ -67,6 +67,7 @@ options_.mode_check.number_of_points = 20;
options_.mode_check.nolik = false;
options_.huge_number = 1e7;
options_.add_tiny_number_to_cholesky=1e-14;
% Default number of threads for parallelized mex files.
options_.threads.kronecker.sparse_hessian_times_B_kronecker_C = num_procs;

View File

@ -0,0 +1,92 @@
function chol_sigma=get_lower_cholesky_covariance(Sigma_e,add_tiny_number_to_cholesky)
% function chol_sigma=get_lower_cholesky_covariance(Sigma_e)
% Computes the lower triangular Cholesky decomposition of a covariance matrix,
% working around zero entries on the diagonal and perfect correlation
%
% INPUTS
% Sigma_e [double] covariance matrix
%
% OUTPUTS
% chol_sigma [cell] Cholesky factor
%
% ALGORITHM
% Add small value to diagonal to break perfect correlation
%
% SPECIAL REQUIREMENTS.
% None.
%
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<2
add_tiny_number_to_cholesky=1e-14;
end
std_deviation=sqrt(diag(Sigma_e));
non_zero_indices=find(std_deviation~=0); %find non-zero shocks;
try
chol_sigma=zeros(size(Sigma_e));
chol_sigma(non_zero_indices,non_zero_indices)=chol(Sigma_e(non_zero_indices,non_zero_indices),'lower');
catch
% cases with perfect correlation
fprintf('Non-positive definite covariance matrix encountered. Using add_tiny_number_to_cholesky one the diagonal.\n')
chol_sigma=zeros(size(Sigma_e));
chol_sigma(non_zero_indices,non_zero_indices)=chol(Sigma_e(non_zero_indices,non_zero_indices)+add_tiny_number_to_cholesky*eye(length(non_zero_indices)),'lower');
% correlation=diag(std_deviation(non_zero_indices))\Sigma_e(non_zero_indices,non_zero_indices)/diag(std_deviation(non_zero_indices));
end
return % --*-- Unit tests --*--
%@test:1
Sigma_e=diag(4*ones(3,1));
Sigma_e(2,2)=0;
chol_1=get_lower_cholesky_covariance(Sigma_e);
if max(max(abs(chol_1-diag([2,0,2]))))>eps
t(1)=false;
else
t(1)=true;
end
Sigma_e=ones(3,3);
chol_2=get_lower_cholesky_covariance(Sigma_e,1e-14);
chol_3=get_lower_cholesky_covariance(Sigma_e+1e-14*eye(3),1e-14);
if max(max(abs(chol_2-chol_3)))>eps || any(any(triu(chol_3,1)))
t(2)=false;
else
t(2)=true;
end
Sigma_e=ones(3,3);
Sigma_e(2,:)=0;
Sigma_e(:,2)=0;
chol_4=get_lower_cholesky_covariance(Sigma_e,1e-14);
if chol_4(2,2)~=0 || any(any(triu(chol_4,1)))
t(3)=false;
else
t(3)=true;
end
Sigma_e=[4 0.5 0; 0.5 9 0; 0 0 16];
chol_5=get_lower_cholesky_covariance(Sigma_e,1e-14);
if any(any(triu(chol_5,1))) %should be lower triangular
t(4)=false;
else
t(4)=true;
end
T = all(t);
%@eof:1

View File

@ -231,15 +231,14 @@ if options_.irf
fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
fprintf(fidTeX,' \n');
end
SS=M_.Sigma_e+1e-14*eye(M_.exo_nbr);
cs = transpose(chol(SS));
cs=get_lower_cholesky_covariance(M_.Sigma_e,options_.add_tiny_number_to_cholesky);
tit = M_.exo_names;
if TeX
titTeX = M_.exo_names_tex;
end
irf_shocks_indx = getIrfShocksIndx(M_, options_);
for i=irf_shocks_indx
if SS(i,i) > 1e-13
if cs(i,i) > 5e-7
if PI_PCL_solver
y=PCL_Part_info_irf (0, PCL_varobs, i_var, M_, oo_.dr, options_.irf, i);
else

View File

@ -172,8 +172,7 @@ if options_.hp_filter == 0 && ~options_.bandpass.indicator
Gamma_y{nar+2} = ones(nvar,1);
else
Gamma_y{nar+2} = NaN(nvar,M_.exo_nbr);
SS=M_.Sigma_e+1e-14*eye(M_.exo_nbr);
cs = chol(SS)';
cs = get_lower_cholesky_covariance(M_.Sigma_e,options_.add_tiny_number_to_cholesky);
b1 = ghu1;
b1 = b1*cs;
b2 = ghu(iky,:);
@ -250,8 +249,7 @@ else% ==> Theoretical filters.
Gamma_y{nar+2} = ones(nvar,1);
else
Gamma_y{nar+2} = zeros(nvar,M_.exo_nbr);
SS = M_.Sigma_e+1e-14*eye(M_.exo_nbr); %make sure Covariance matrix is positive definite
cs = chol(SS)';
cs = get_lower_cholesky_covariance(M_.Sigma_e); %make sure Covariance matrix is positive definite
SS = cs*cs';
b1 = ghu1;
b2 = ghu(iky,:);