diff --git a/matlab/dynare_estimation_1.m b/matlab/dynare_estimation_1.m index 30dd19e4e..d30699240 100644 --- a/matlab/dynare_estimation_1.m +++ b/matlab/dynare_estimation_1.m @@ -106,6 +106,20 @@ if ~isempty(options_.mode_file) && ~options_.mh_posterior_mode_estimation load(options_.mode_file); end +%% load optimal_mh_scale parameter if previous run was with +%% mode_compute=6 +mh_scale_fname = [M_.fname '_optimal_mh_scale_parameter.mat']; +if exist(mh_scale_fname) + if options_.mode_compute == 0 + tmp = load(mh_scale_fname,'Scale'); + bayestopt_.mh_jscale = tmp.Scale; + clear tmp; + else + % remove the file if mode_compute ~= 0 + delete('mh_scale_fname') + end +end + if ~isempty(estim_params_) set_parameters(xparam1); end @@ -170,11 +184,6 @@ if isequal(options_.mode_compute,0) && isempty(options_.mode_file) && options_.m return end -if isequal(options_.mode_compute,6) - % Erase previously computed optimal mh scale parameter. - delete([M_.fname '_optimal_mh_scale_parameter.mat']) -end - %% Estimation of the posterior mode or likelihood mode if ~isequal(options_.mode_compute,0) && ~options_.mh_posterior_mode_estimation diff --git a/matlab/random_walk_metropolis_hastings_core.m b/matlab/random_walk_metropolis_hastings_core.m index b5ad698ec..69062f66c 100644 --- a/matlab/random_walk_metropolis_hastings_core.m +++ b/matlab/random_walk_metropolis_hastings_core.m @@ -112,23 +112,12 @@ if strcmpi(ProposalFun,'rand_multivariate_normal') elseif strcmpi(ProposalFun,'rand_multivariate_student') n = options_.student_degrees_of_freedom; end -% load([MhDirectoryName '/' ModelName '_mh_history.mat'],'record'); + %%%% %%%% NOW i run the (nblck-fblck+1) metropolis-hastings chains %%%% - -if any(isnan(bayestopt_.jscale)) || (options_.mode_compute==0 && ~isempty(options_.mode_file)) - if exist([ModelName '_optimal_mh_scale_parameter.mat'])% This file is created by mode_compute=6. - load([ModelName '_optimal_mh_scale_parameter']) - proposal_covariance_Cholesky_decomposition = d*Scale; - else - error('mh:: Something is wrong. I can''t figure out the value of the scale parameter.') - end -else - proposal_covariance_Cholesky_decomposition = d*diag(bayestopt_.jscale); -end - +proposal_covariance_Cholesky_decomposition = d*diag(bayestopt_.jscale); jloop=0; diff --git a/tests/Makefile.am b/tests/Makefile.am index 0aac45818..36bd25f2b 100644 --- a/tests/Makefile.am +++ b/tests/Makefile.am @@ -141,8 +141,11 @@ MODFILES = \ deterministic_simulations/rbc_det4.mod \ deterministic_simulations/rbc_det5.mod \ fs2000/fs2000_sd.mod \ - walsh.mod - + walsh.mod \ + estimation/fs2000_mc4.mod \ + estimation/fs2000_mc4_mf.mod \ + estimation/fs2000_mc6.mod \ + estimation/fs2000_mc6_mf.mod EXTRA_DIST = \ $(MODFILES) \ homotopy/common.mod \ @@ -193,6 +196,7 @@ EXTRA_DIST = \ kalman_filter_smoother/fsdat_simul.m \ kalman_filter_smoother/fs2000a_steadystate.m \ identification/kim/kim2_steadystate.m \ + estimation/fsdat_simul.m \ ep/mean_preserving_spread.m TARGETS = diff --git a/tests/estimation/fs2000.mod b/tests/estimation/fs2000.mod new file mode 100644 index 000000000..981dd35f6 --- /dev/null +++ b/tests/estimation/fs2000.mod @@ -0,0 +1,75 @@ +// See fs2000.mod in the examples/ directory for details on the model + +var m P c e W R k d n l gy_obs gp_obs y dA; +varexo e_a e_m; + +parameters alp bet gam mst rho psi del; + +alp = 0.33; +bet = 0.99; +gam = 0.003; +mst = 1.011; +rho = 0.7; +psi = 0.787; +del = 0.02; + +model; +dA = exp(gam+e_a); +log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m; +-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0; +W = l/n; +-(psi/(1-psi))*(c*P/(1-n))+l/n = 0; +R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W; +1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0; +c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1); +P*c = m; +m-1+d = l; +e = exp(e_a); +y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a)); +gy_obs = dA*y/y(-1); +gp_obs = (P/P(-1))*m(-1)/dA; +end; + +initval; +k = 6; +m = mst; +P = 2.25; +c = 0.45; +e = 1; +W = 4; +R = 1.02; +d = 0.85; +n = 0.19; +l = 0.86; +y = 0.6; +gy_obs = exp(gam); +gp_obs = exp(-gam); +dA = exp(gam); +end; + +shocks; +var e_a; stderr 0.014; +var e_m; stderr 0.005; +end; + +steady; + +check; + +estimated_params; +alp, beta_pdf, 0.356, 0.02; +bet, beta_pdf, 0.993, 0.002; +gam, normal_pdf, 0.0085, 0.003; +mst, normal_pdf, 1.0002, 0.007; +rho, beta_pdf, 0.129, 0.223; +psi, beta_pdf, 0.65, 0.05; +del, beta_pdf, 0.01, 0.005; +stderr e_a, inv_gamma_pdf, 0.035449, inf; +stderr e_m, inv_gamma_pdf, 0.008862, inf; +end; + +varobs gp_obs gy_obs; + +options_.solve_tolf = 1e-12; + +estimation(order=1,datafile=fsdat_simul,nobs=192,loglinear,mh_replic=2000,mh_nblocks=2,mh_jscale=0.8); diff --git a/tests/estimation/fs2000_mc4.mod b/tests/estimation/fs2000_mc4.mod new file mode 100644 index 000000000..8b9ebb4a1 --- /dev/null +++ b/tests/estimation/fs2000_mc4.mod @@ -0,0 +1,73 @@ +// test mode_compute default (=4) +// See fs2000.mod in the examples/ directory for details on the model + +var m P c e W R k d n l gy_obs gp_obs y dA; +varexo e_a e_m; + +parameters alp bet gam mst rho psi del; + +alp = 0.33; +bet = 0.99; +gam = 0.003; +mst = 1.011; +rho = 0.7; +psi = 0.787; +del = 0.02; + +model; +dA = exp(gam+e_a); +log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m; +-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0; +W = l/n; +-(psi/(1-psi))*(c*P/(1-n))+l/n = 0; +R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W; +1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0; +c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1); +P*c = m; +m-1+d = l; +e = exp(e_a); +y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a)); +gy_obs = dA*y/y(-1); +gp_obs = (P/P(-1))*m(-1)/dA; +end; + +steady_state_model; + dA = exp(gam); + gst = 1/dA; + m = mst; + + khst = ( (1-gst*bet*(1-del)) / (alp*gst^alp*bet) )^(1/(alp-1)); + xist = ( ((khst*gst)^alp - (1-gst*(1-del))*khst)/mst )^(-1); + nust = psi*mst^2/( (1-alp)*(1-psi)*bet*gst^alp*khst^alp ); + n = xist/(nust+xist); + P = xist + nust; + k = khst*n; + + l = psi*mst*n/( (1-psi)*(1-n) ); + c = mst/P; + d = l - mst + 1; + y = k^alp*n^(1-alp)*gst^alp; + R = mst/bet; + + W = l/n; + e = 1; + + gp_obs = m/dA; + gy_obs = dA; +end; + +estimated_params; +alp, beta_pdf, 0.356, 0.02; +bet, beta_pdf, 0.993, 0.002; +gam, normal_pdf, 0.0085, 0.003; +mst, normal_pdf, 1.0002, 0.007; +rho, beta_pdf, 0.129, 0.223; +psi, beta_pdf, 0.65, 0.05; +del, beta_pdf, 0.01, 0.005; +stderr e_a, inv_gamma_pdf, 0.035449, inf; +stderr e_m, inv_gamma_pdf, 0.008862, inf; +end; + +varobs gp_obs gy_obs; + +estimation(order=1,datafile=fsdat_simul,nobs=192,loglinear,mh_replic=0); diff --git a/tests/estimation/fs2000_mc4_mf.mod b/tests/estimation/fs2000_mc4_mf.mod new file mode 100644 index 000000000..6c0a9428e --- /dev/null +++ b/tests/estimation/fs2000_mc4_mf.mod @@ -0,0 +1,66 @@ +// test mode_compute=0 with mode_file computed with default (mode_compute=4) +// See fs2000.mod in the examples/ directory for details on the model + +var m P c e W R k d n l gy_obs gp_obs y dA; +varexo e_a e_m; + +parameters alp bet gam mst rho psi del; + + +model; +dA = exp(gam+e_a); +log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m; +-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0; +W = l/n; +-(psi/(1-psi))*(c*P/(1-n))+l/n = 0; +R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W; +1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0; +c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1); +P*c = m; +m-1+d = l; +e = exp(e_a); +y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a)); +gy_obs = dA*y/y(-1); +gp_obs = (P/P(-1))*m(-1)/dA; +end; + +steady_state_model; + dA = exp(gam); + gst = 1/dA; + m = mst; + + khst = ( (1-gst*bet*(1-del)) / (alp*gst^alp*bet) )^(1/(alp-1)); + xist = ( ((khst*gst)^alp - (1-gst*(1-del))*khst)/mst )^(-1); + nust = psi*mst^2/( (1-alp)*(1-psi)*bet*gst^alp*khst^alp ); + n = xist/(nust+xist); + P = xist + nust; + k = khst*n; + + l = psi*mst*n/( (1-psi)*(1-n) ); + c = mst/P; + d = l - mst + 1; + y = k^alp*n^(1-alp)*gst^alp; + R = mst/bet; + + W = l/n; + e = 1; + + gp_obs = m/dA; + gy_obs = dA; +end; + +estimated_params; +alp, beta_pdf, 0.356, 0.02; +bet, beta_pdf, 0.993, 0.002; +gam, normal_pdf, 0.0085, 0.003; +mst, normal_pdf, 1.0002, 0.007; +rho, beta_pdf, 0.129, 0.223; +psi, beta_pdf, 0.65, 0.05; +del, beta_pdf, 0.01, 0.005; +stderr e_a, inv_gamma_pdf, 0.035449, inf; +stderr e_m, inv_gamma_pdf, 0.008862, inf; +end; + +varobs gp_obs gy_obs; + +estimation(order=1,datafile=fsdat_simul,nobs=192,loglinear,mode_compute=0,mode_file=fs2000_mc4_mode,mh_replic=2000,mh_jscale=0.8); diff --git a/tests/estimation/fs2000_mc6.mod b/tests/estimation/fs2000_mc6.mod new file mode 100644 index 000000000..0819affdf --- /dev/null +++ b/tests/estimation/fs2000_mc6.mod @@ -0,0 +1,73 @@ +// test mode_compute=6 +// See fs2000.mod in the examples/ directory for details on the model + +var m P c e W R k d n l gy_obs gp_obs y dA; +varexo e_a e_m; + +parameters alp bet gam mst rho psi del; + +alp = 0.33; +bet = 0.99; +gam = 0.003; +mst = 1.011; +rho = 0.7; +psi = 0.787; +del = 0.02; + +model; +dA = exp(gam+e_a); +log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m; +-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0; +W = l/n; +-(psi/(1-psi))*(c*P/(1-n))+l/n = 0; +R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W; +1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0; +c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1); +P*c = m; +m-1+d = l; +e = exp(e_a); +y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a)); +gy_obs = dA*y/y(-1); +gp_obs = (P/P(-1))*m(-1)/dA; +end; + +steady_state_model; + dA = exp(gam); + gst = 1/dA; + m = mst; + + khst = ( (1-gst*bet*(1-del)) / (alp*gst^alp*bet) )^(1/(alp-1)); + xist = ( ((khst*gst)^alp - (1-gst*(1-del))*khst)/mst )^(-1); + nust = psi*mst^2/( (1-alp)*(1-psi)*bet*gst^alp*khst^alp ); + n = xist/(nust+xist); + P = xist + nust; + k = khst*n; + + l = psi*mst*n/( (1-psi)*(1-n) ); + c = mst/P; + d = l - mst + 1; + y = k^alp*n^(1-alp)*gst^alp; + R = mst/bet; + + W = l/n; + e = 1; + + gp_obs = m/dA; + gy_obs = dA; +end; + +estimated_params; +alp, beta_pdf, 0.356, 0.02; +bet, beta_pdf, 0.993, 0.002; +gam, normal_pdf, 0.0085, 0.003; +mst, normal_pdf, 1.0002, 0.007; +rho, beta_pdf, 0.129, 0.223; +psi, beta_pdf, 0.65, 0.05; +del, beta_pdf, 0.01, 0.005; +stderr e_a, inv_gamma_pdf, 0.035449, inf; +stderr e_m, inv_gamma_pdf, 0.008862, inf; +end; + +varobs gp_obs gy_obs; + +estimation(order=1,datafile=fsdat_simul,nobs=192,loglinear,mh_replic=0,mode_compute=6); diff --git a/tests/estimation/fs2000_mc6_mf.mod b/tests/estimation/fs2000_mc6_mf.mod new file mode 100644 index 000000000..577abb4a6 --- /dev/null +++ b/tests/estimation/fs2000_mc6_mf.mod @@ -0,0 +1,66 @@ +// test mode_compute=0 with mode_file computed with mode_compute=6 +// See fs2000.mod in the examples/ directory for details on the model + +var m P c e W R k d n l gy_obs gp_obs y dA; +varexo e_a e_m; + +parameters alp bet gam mst rho psi del; + + +model; +dA = exp(gam+e_a); +log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m; +-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0; +W = l/n; +-(psi/(1-psi))*(c*P/(1-n))+l/n = 0; +R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W; +1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0; +c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1); +P*c = m; +m-1+d = l; +e = exp(e_a); +y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a)); +gy_obs = dA*y/y(-1); +gp_obs = (P/P(-1))*m(-1)/dA; +end; + +steady_state_model; + dA = exp(gam); + gst = 1/dA; + m = mst; + + khst = ( (1-gst*bet*(1-del)) / (alp*gst^alp*bet) )^(1/(alp-1)); + xist = ( ((khst*gst)^alp - (1-gst*(1-del))*khst)/mst )^(-1); + nust = psi*mst^2/( (1-alp)*(1-psi)*bet*gst^alp*khst^alp ); + n = xist/(nust+xist); + P = xist + nust; + k = khst*n; + + l = psi*mst*n/( (1-psi)*(1-n) ); + c = mst/P; + d = l - mst + 1; + y = k^alp*n^(1-alp)*gst^alp; + R = mst/bet; + + W = l/n; + e = 1; + + gp_obs = m/dA; + gy_obs = dA; +end; + +estimated_params; +alp, beta_pdf, 0.356, 0.02; +bet, beta_pdf, 0.993, 0.002; +gam, normal_pdf, 0.0085, 0.003; +mst, normal_pdf, 1.0002, 0.007; +rho, beta_pdf, 0.129, 0.223; +psi, beta_pdf, 0.65, 0.05; +del, beta_pdf, 0.01, 0.005; +stderr e_a, inv_gamma_pdf, 0.035449, inf; +stderr e_m, inv_gamma_pdf, 0.008862, inf; +end; + +varobs gp_obs gy_obs; + +estimation(order=1,datafile=fsdat_simul,nobs=192,loglinear,mode_compute=0,mode_file=fs2000_mc6_mode,mh_replic=2000,mh_jscale=0.8);