test suite: remove practicing directory. closes #1500

time-shift
Houtan Bastani 2017-08-29 17:15:06 +02:00
parent a9ce9cc118
commit 85d00ad267
30 changed files with 0 additions and 1642 deletions

View File

@ -1,47 +0,0 @@
periods 500;
var dc, dd, v_c, v_d, x;
varexo e_c, e_x, e_d;
parameters DELTA THETA PSI MU_C MU_D RHO_X LAMBDA_DX;
DELTA=.99;
PSI=1.5;
THETA=(1-7.5)/(1-1/PSI);
MU_C=0.0015;
MU_D=0.0015;
RHO_X=.979;
LAMBDA_DX=3;
model;
v_c = DELTA^THETA * exp((-THETA/PSI)*dc(+1) + (THETA-1)*log((1+v_c(+1))*exp(dc(+1))/v_c) ) * (1+v_c(+1))*exp(dc(+1));
v_d = DELTA^THETA * exp((-THETA/PSI)*dc(+1) + (THETA-1)*log((1+v_c(+1))*exp(dc(+1))/v_c) ) * (1+v_d(+1))*exp(dd(+1));
dc = MU_C + x(-1) + e_c;
dd = MU_D + LAMBDA_DX*x(-1) + e_d;
x = RHO_X * x(-1) + e_x;
end;
initval;
v_c=15;
v_d=15;
dc=MU_C;
dd=MU_D;
x=0;
e_c=0;
e_x=0;
e_d=0;
end;
shocks;
var e_c;
stderr .0078;
var e_x;
stderr .0078*.044;
var e_d;
stderr .0078*4.5;
end;
steady(solve_algo=0);
check;
stoch_simul(dr_algo=1, order=1, periods=1000, irf=30);
datasaver('simudata',[]);

View File

@ -1,58 +0,0 @@
var dc, dd, v_c, v_d, x;
varexo e_c, e_x, e_d;
parameters DELTA THETA PSI MU_C MU_D RHO_X LAMBDA_DX;
DELTA=.99;
PSI=1.5;
THETA=(1-7.5)/(1-1/PSI);
MU_C=0.0015;
MU_D=0.0015;
RHO_X=.979;
LAMBDA_DX=3;
model;
v_c = DELTA^THETA * exp((-THETA/PSI)*dc(+1) + (THETA-1)*log((1+v_c(+1))*exp(dc(+1))/v_c) ) * (1+v_c(+1))*exp(dc(+1));
v_d = DELTA^THETA * exp((-THETA/PSI)*dc(+1) + (THETA-1)*log((1+v_c(+1))*exp(dc(+1))/v_c) ) * (1+v_d(+1))*exp(dd(+1));
dc = MU_C + x(-1) + e_c;
dd = MU_D + LAMBDA_DX*x(-1) + e_d;
x = RHO_X * x(-1) + e_x;
end;
initval;
v_c=15;
v_d=15;
dc=MU_C;
dd=MU_D;
x=0;
e_c=0;
e_x=0;
e_d=0;
end;
shocks;
var e_d; stderr .001;
var e_c; stderr .001;
var e_x; stderr .001;
end;
steady;
estimated_params;
DELTA, beta_pdf, 0.98,.005;
THETA,normal_pdf,-19.5, 0.0025;
PSI,normal_pdf,1.6, 0.1;
MU_C,normal_pdf,0.001, 0.001;
MU_D,normal_pdf,0.001, 0.001;
RHO_X,normal_pdf,.98, 0.005;
LAMBDA_DX,normal_pdf,3, 0.05;
stderr e_d,inv_gamma_pdf,.0025, 30;
stderr e_x,inv_gamma_pdf,.0003, 30;
stderr e_c,inv_gamma_pdf,.01, 30;
end;
varobs v_d dd dc;
estimation(datafile=simudata,mh_replic=1000,mh_jscale=.4,nodiagnostic);

View File

@ -1,42 +0,0 @@
var x y;
varexo e_x e_u;
parameters rho sig_x sig_u mu_y;
rho = .98;
mu_y=.015;
sig_x=0.00025;
sig_u=.0078;
model(linear);
x=rho*x(-1) + sig_x*e_x;
y=mu_y + x(-1) + sig_u*e_u;
end;
initval;
x=0;
y=mu_y;
end;
steady;
shocks;
var e_x;
stderr 1;
var e_u;
stderr 1;
end;
estimated_params;
rho, beta_pdf, .98, .01;
mu_y, uniform_pdf, .005, .0025;
sig_u, inv_gamma_pdf, .003, inf;
sig_x, inv_gamma_pdf, .003, inf;
// The syntax for to input the priors is the following:
// variable name, prior distribution, parameters of distribution.
end;
varobs y;
estimation(datafile=data_consRicardoypg,first_obs=1,nobs=227,mh_replic=5000,mh_nblocks=1,mh_jscale=1);

View File

@ -1,44 +0,0 @@
var x y;
varexo e_x e_u;
parameters rho sig_x sig_u mu_y;
rho = .98;
mu_y=.015;
sig_x=0.00025;
sig_u=.0078;
model(linear);
x=rho*x(-1) + sig_x*e_x;
y=mu_y + x(-1) + sig_u*e_u;
end;
initval;
x=0;
y=mu_y;
end;
steady;
shocks;
var e_x;
stderr 1;
var e_u;
stderr 1;
end;
estimated_params;
// ML estimation setup
// parameter name, initial value, boundaries_low, ..._up;
rho, 0, -0.99, 0.999; // use this for unconstrained max likelihood
// rho, .98, .975, .999 ; // use this for long run risk model
// sig_x, .0004,.0001,.05 ; // use this for the long run risk model
sig_x, .0005, .00000000001, .01; // use this for unconstrained max likelihood
sig_u, .007,.001, .1;
mu_y, .014, .0001, .04;
end;
varobs y;
estimation(datafile=data_consRicardoypg,first_obs=1,nobs=227,mh_replic=0,mode_compute=4,mode_check);

View File

@ -1,79 +0,0 @@
// This program replicates figure 11.3.1 from chapter 11 of RMT2 by Ljungqvist and Sargent
var c k;
varexo taui tauc tauk g;
parameters bet gam del alpha A;
bet=.95;
gam=2;
del=.2;
alpha=.33;
A=1;
model;
k=A*k(-1)^alpha+(1-del)*k(-1)-c-g;
c^(-gam)= bet*(c(+1)^(-gam))*((1+tauc(-1))/(1+tauc))*((1-taui)*(1-del)/(1-taui(-1))+
((1-tauk)/(1-taui(-1)))*alpha*A*k(-1)^(alpha-1));
end;
initval;
k=1.5;
c=0.6;
g = 0.2;
tauc = 0;
taui = 0;
tauk = 0;
end;
steady;
endval;
k=1.5;
c=0.4;
g =.4;
tauc =0;
taui =0;
tauk =0;
end;
steady;
shocks;
var g;
periods 1:9;
values 0.2;
end;
simul(periods=100);
co=ys0_(var_index('c'));
ko = ys0_(var_index('k'));
go = ex_(1,1);
rbig0=1/bet;
rbig=y_(var_index('c'),2:101).^(-gam)./(bet*y_(var_index('c'),3:102).^(-gam));
rq0=alpha*A*ko^(alpha-1);
rq=alpha*A*y_(var_index('k'),1:100).^(alpha-1);
wq0=A*ko^alpha-ko*alpha*A*ko^(alpha-1);
wq=A*y_(var_index('k'),1:100).^alpha-y_(var_index('k'),1:100).*alpha*A.*y_(var_index('k'),1:100).^(alpha-1);
sq0=(1-ex_(1,4))*A*alpha*ko^(alpha-1)+(1-del);
sq=(1-ex_(1:100,4)')*A*alpha.*y_(var_index('k'),1:100).^(alpha-1)+(1-del);
figure
subplot(2,3,1)
plot([ko*ones(100,1) y_(var_index('k'),1:100)' ])
title('k')
subplot(2,3,2)
plot([co*ones(100,1) y_(var_index('c'),2:101)' ])
title('c')
subplot(2,3,3)
plot([rbig0*ones(100,1) rbig' ])
title('R')
subplot(2,3,4)
plot([wq0*ones(100,1) wq' ])
title('w/q')
subplot(2,3,5)
plot([sq0*ones(100,1) sq' ])
title('s/q')
subplot(2,3,6)
plot([rq0*ones(100,1) rq' ])
title('r/q')
print -depsc fig1131.ps

View File

@ -1,130 +0,0 @@
// This program replicates figure 11.3.1 from chapter 11 of RMT2 by Ljungqvist and Sargent
// This is a commented version of the program given in the handout.
// Note: y_ records the simulated endogenous variables in alphabetical order
// ys0_ records the initial steady state
// ys_ records the terminal steady state
// We check that these line up at the end points
// Note: y_ has ys0_ in first column, ys_ in last column, explaining why it is 102 long;
// The sample of size 100 is in between.
// Warning: we align c, k, and the taxes to exploit the dynare syntax. See comments below.
// So k in the program corresponds to k_{t+1} and the same timing holds for the taxes.
//Declares the endogenous variables;
var c k;
//declares the exogenous variables // investment tax credit, consumption tax, capital tax, government spending
varexo taui tauc tauk g;
parameters bet gam del alpha A;
bet=.95; // discount factor
gam=2; // CRRA parameter
del=.2; // depreciation rate
alpha=.33; // capital's share
A=1; // productivity
// Alignment convention:
// g tauc taui tauk are now columns of ex_. Because of a bad design decision
// the date of ex_(1,:) doesn't necessarily match the date in y_. Whether they match depends
// on the number of lag periods in endogenous versus exogenous variables.
// In this example they match because tauc(-1) and taui(-1) enter the model.
// These decisions and the timing conventions mean that
// y_(:,1) records the initial steady state, while y_(:,102) records the terminal steady state values.
// For j > 2, y_(:,j) records [c(j-1) .. k(j-1) .. G(j-1)] where k(j-1) means
// end of period capital in period j-1, which equals k(j) in chapter 11 notation.
// Note that the jump in G occurs in y_(;,11), which confirms this timing.
// the jump occurs now in ex_(11,1)
model;
// equation 11.3.8.a
k=A*k(-1)^alpha+(1-del)*k(-1)-c-g;
// equation 11.3.8e + 11.3.8.g
c^(-gam)= bet*(c(+1)^(-gam))*((1+tauc(-1))/(1+tauc))*((1-taui)*(1-del)/(1-taui(-1))+
((1-tauk)/(1-taui(-1)))*alpha*A*k(-1)^(alpha-1));
end;
initval;
k=1.5;
c=0.6;
g = 0.2;
tauc = 0;
taui = 0;
tauk = 0;
end;
steady; // put this in if you want to start from the initial steady state, comment it out to start from the indicated values
endval; // The following values determine the new steady state after the shocks.
k=1.5;
c=0.4;
g =.4;
tauc =0;
taui =0;
tauk =0;
end;
steady; // We use steady again and the enval provided are initial guesses for dynare to compute the ss.
// The following lines produce a g sequence with a once and for all jump in g
shocks;
// we use shocks to undo that for the first 9 periods and leave g at
// it's initial value of 0
var g;
periods 1:9;
values 0.2;
end;
// now solve the model
simul(periods=100);
// Note: y_ records the simulated endogenous variables in alphabetical order
// ys0_ records the initial steady state
// ys_ records the terminal steady state
// check that these line up at the end points
y_(:,1) -ys0_(:)
y_(:,102) - ys_(:)
// Compute the initial steady state for consumption to later do the plots.
co=ys0_(var_index('c'));
ko = ys0_(var_index('k'));
// g is in ex_(:,1) since it is stored in alphabetical order
go = ex_(1,1)
// The following equation compute the other endogenous variables use in the plots below
// Since they are function of capital and consumption, so we can compute them from the solved
// model above.
// These equations were taken from page 333 of RMT2
rbig0=1/bet;
rbig=y_(var_index('c'),2:101).^(-gam)./(bet*y_(var_index('c'),3:102).^(-gam));
rq0=alpha*A*ko^(alpha-1);
rq=alpha*A*y_(var_index('k'),1:100).^(alpha-1);
wq0=A*ko^alpha-ko*alpha*A*ko^(alpha-1);
wq=A*y_(var_index('k'),1:100).^alpha-y_(var_index('k'),1:100).*alpha*A.*y_(var_index('k'),1:100).^(alpha-1);
sq0=(1-ex_(1,4))*A*alpha*ko^(alpha-1)+(1-del);
sq=(1-ex_(1:100,4)')*A*alpha.*y_(var_index('k'),1:100).^(alpha-1)+(1-del);
//Now we plot the responses of the endogenous variables to the shock.
figure
subplot(2,3,1)
plot([ko*ones(100,1) y_(var_index('k'),1:100)' ]) // note the timing: we lag capital to correct for syntax
title('k')
subplot(2,3,2)
plot([co*ones(100,1) y_(var_index('c'),2:101)' ])
title('c')
subplot(2,3,3)
plot([rbig0*ones(100,1) rbig' ])
title('R')
subplot(2,3,4)
plot([wq0*ones(100,1) wq' ])
title('w/q')
subplot(2,3,5)
plot([sq0*ones(100,1) sq' ])
title('s/q')
subplot(2,3,6)
plot([rq0*ones(100,1) rq' ])
title('r/q')

View File

@ -1,79 +0,0 @@
// This program replicates figure 11.3.1 from chapter 11 of RMT2 by Ljungqvist and Sargent
var c k;
varexo taui tauc tauk g;
parameters bet gam del alpha A;
bet=.95;
gam=2;
del=.2;
alpha=.33;
A=1;
model;
k=A*k(-1)^alpha+(1-del)*k(-1)-c-g;
c^(-gam)= bet*(c(+1)^(-gam))*((1+tauc(-1))/(1+tauc))*((1-taui)*(1-del)/(1-taui(-1))+
((1-tauk)/(1-taui(-1)))*alpha*A*k(-1)^(alpha-1));
end;
initval;
k=1.5;
c=0.6;
g = 0.2;
tauc = 0;
taui = 0;
tauk = 0;
end;
steady;
endval;
k=1.5;
c=0.6;
g = 0.2;
tauc =0.2;
taui =0;
tauk =0;
end;
steady;
shocks;
var tauc;
periods 1:9;
values 0;
end;
simul(periods=100);
co=ys0_(var_index('c'));
ko = ys0_(var_index('k'));
go = ex_(1,1);
rbig0=1/bet;
rbig=y_(var_index('c'),2:101).^(-gam)./(bet*y_(var_index('c'),3:102).^(-gam));
rq0=alpha*A*ko^(alpha-1);
rq=alpha*A*y_(var_index('k'),1:100).^(alpha-1);
wq0=A*ko^alpha-ko*alpha*A*ko^(alpha-1);
wq=A*y_(var_index('k'),1:100).^alpha-y_(var_index('k'),1:100).*alpha*A.*y_(var_index('k'),1:100).^(alpha-1);
sq0=(1-ex_(1,4))*A*alpha*ko^(alpha-1)+(1-del);
sq=(1-ex_(1:100,4)')*A*alpha.*y_(var_index('k'),1:100).^(alpha-1)+(1-del);
figure
subplot(2,3,1)
plot([ko*ones(100,1) y_(var_index('k'),1:100)' ])
title('k')
subplot(2,3,2)
plot([co*ones(100,1) y_(var_index('c'),2:101)' ])
title('c')
subplot(2,3,3)
plot([rbig0*ones(100,1) rbig' ])
title('R')
subplot(2,3,4)
plot([wq0*ones(100,1) wq' ])
title('w/q')
subplot(2,3,5)
plot([sq0*ones(100,1) sq' ])
title('s/q')
subplot(2,3,6)
plot([rq0*ones(100,1) rq' ])
title('r/q')
print -depsc fig1132.ps

View File

@ -1,80 +0,0 @@
// This program replicates figure 11.3.1 from chapter 11 of RMT2 by Ljungqvist and Sargent
var c k;
varexo taui tauc tauk g;
parameters bet gam del alpha A;
bet=.95;
gam=2;
del=.2;
alpha=.33;
A=1;
model;
k=A*k(-1)^alpha+(1-del)*k(-1)-c-g;
c^(-gam)= bet*(c(+1)^(-gam))*((1+tauc(-1))/(1+tauc))*((1-taui)*(1-del)/(1-taui(-1))+
((1-tauk)/(1-taui(-1)))*alpha*A*k(-1)^(alpha-1));
end;
initval;
k=1.5;
c=0.6;
g = 0.2;
tauc = 0;
taui = 0;
tauk = 0;
end;
steady;
endval;
k=1.5;
c=0.6;
g =0.2;
tauc =0;
taui =0.20;
tauk =0;
end;
steady;
shocks;
var taui;
periods 1:9;
values 0;
end;
simul(periods=100);
co=ys0_(var_index('c'));
ko = ys0_(var_index('k'));
go = ex_(1,1);
rbig0=1/bet;
rbig=y_(var_index('c'),2:101).^(-gam)./(bet*y_(var_index('c'),3:102).^(-gam));
rq0=alpha*A*ko^(alpha-1);
rq=alpha*A*y_(var_index('k'),1:100).^(alpha-1);
wq0=A*ko^alpha-ko*alpha*A*ko^(alpha-1);
wq=A*y_(var_index('k'),1:100).^alpha-y_(var_index('k'),1:100).*alpha*A.*y_(var_index('k'),1:100).^(alpha-1);
sq0=(1-ex_(1,4))*A*alpha*ko^(alpha-1)+(1-del);
sq=(1-ex_(1:100,4)')*A*alpha.*y_(var_index('k'),1:100).^(alpha-1)+(1-del);
figure
subplot(2,3,1)
plot([ko*ones(100,1) y_(var_index('k'),1:100)' ])
title('k')
subplot(2,3,2)
plot([co*ones(100,1) y_(var_index('c'),2:101)' ])
title('c')
subplot(2,3,3)
plot([rbig0*ones(100,1) rbig' ])
title('R')
subplot(2,3,4)
plot([wq0*ones(100,1) wq' ])
title('w/q')
subplot(2,3,5)
plot([sq0*ones(100,1) sq' ])
title('s/q')
subplot(2,3,6)
plot([rq0*ones(100,1) rq' ])
title('r/q')
print -depsc fig1151.ps

View File

@ -1,80 +0,0 @@
// This program replicates figure 11.3.1 from chapter 11 of RMT2 by Ljungqvist and Sargent
var c k;
varexo taui tauc tauk g;
parameters bet gam del alpha A;
bet=.95;
gam=2;
del=.2;
alpha=.33;
A=1;
model;
k=A*k(-1)^alpha+(1-del)*k(-1)-c-g;
c^(-gam)= bet*(c(+1)^(-gam))*((1+tauc(-1))/(1+tauc))*((1-taui)*(1-del)/(1-taui(-1))+
((1-tauk)/(1-taui(-1)))*alpha*A*k(-1)^(alpha-1));
end;
initval;
k=1.5;
c=0.6;
g = 0.2;
tauc = 0;
taui = 0;
tauk = 0;
end;
steady;
endval;
k=1.5;
c=0.6;
g =0.2;
tauc =0;
taui =0;
tauk = 0.2;
end;
steady;
shocks;
var tauk;
periods 1:9;
values 0;
end;
simul(periods=100);
co=ys0_(var_index('c'));
ko = ys0_(var_index('k'));
go = ex_(1,1);
rbig0=1/bet;
rbig=y_(var_index('c'),2:101).^(-gam)./(bet*y_(var_index('c'),3:102).^(-gam));
rq0=alpha*A*ko^(alpha-1);
rq=alpha*A*y_(var_index('k'),1:100).^(alpha-1);
wq0=A*ko^alpha-ko*alpha*A*ko^(alpha-1);
wq=A*y_(var_index('k'),1:100).^alpha-y_(var_index('k'),1:100).*alpha*A.*y_(var_index('k'),1:100).^(alpha-1);
sq0=(1-ex_(1,4))*A*alpha*ko^(alpha-1)+(1-del);
sq=(1-ex_(1:100,4)')*A*alpha.*y_(var_index('k'),1:100).^(alpha-1)+(1-del);
figure
subplot(2,3,1)
plot([ko*ones(100,1) y_(var_index('k'),1:100)' ])
title('k')
subplot(2,3,2)
plot([co*ones(100,1) y_(var_index('c'),2:101)' ])
title('c')
subplot(2,3,3)
plot([rbig0*ones(100,1) rbig' ])
title('R')
subplot(2,3,4)
plot([wq0*ones(100,1) wq' ])
title('w/q')
subplot(2,3,5)
plot([sq0*ones(100,1) sq' ])
title('s/q')
subplot(2,3,6)
plot([rq0*ones(100,1) rq' ])
title('r/q')
print -depsc fig1152.ps

View File

@ -1,80 +0,0 @@
// This program replicates figure 11.3.1 from chapter 11 of RMT2 by Ljungqvist and Sargent
var c k;
varexo taui tauc tauk g;
parameters bet gam del alpha A;
bet=.95;
gam=2;
del=.2;
alpha=.33;
A=1;
model;
k=A*k(-1)^alpha+(1-del)*k(-1)-c-g;
c^(-gam)= bet*(c(+1)^(-gam))*((1+tauc(-1))/(1+tauc))*((1-taui)*(1-del)/(1-taui(-1))+
((1-tauk)/(1-taui(-1)))*alpha*A*k(-1)^(alpha-1));
end;
initval;
k=1.5;
c=0.6;
g = 0.2;
tauc = 0;
taui = 0;
tauk = 0;
end;
steady;
endval;
k=1.5;
c=0.6;
g = 0.2;
tauc =0;
taui =0;
tauk =0;
end;
steady;
shocks;
var g;
periods 10;
values 0.4;
end;
simul(periods=100);
co=ys0_(var_index('c'));
ko = ys0_(var_index('k'));
go = ex_(1,1);
rbig0=1/bet;
rbig=y_(var_index('c'),2:101).^(-gam)./(bet*y_(var_index('c'),3:102).^(-gam));
rq0=alpha*A*ko^(alpha-1);
rq=alpha*A*y_(var_index('k'),1:100).^(alpha-1);
wq0=A*ko^alpha-ko*alpha*A*ko^(alpha-1);
wq=A*y_(var_index('k'),1:100).^alpha-y_(var_index('k'),1:100).*alpha*A.*y_(var_index('k'),1:100).^(alpha-1);
sq0=(1-ex_(1,4))*A*alpha*ko^(alpha-1)+(1-del);
sq=(1-ex_(1:100,4)')*A*alpha.*y_(var_index('k'),1:100).^(alpha-1)+(1-del);
figure
subplot(2,3,1)
plot([ko*ones(100,1) y_(var_index('k'),1:100)' ])
title('k')
subplot(2,3,2)
plot([co*ones(100,1) y_(var_index('c'),2:101)' ])
title('c')
subplot(2,3,3)
plot([rbig0*ones(100,1) rbig' ])
title('R')
subplot(2,3,4)
plot([wq0*ones(100,1) wq' ])
title('w/q')
subplot(2,3,5)
plot([sq0*ones(100,1) sq' ])
title('s/q')
subplot(2,3,6)
plot([rq0*ones(100,1) rq' ])
title('r/q')
print -depsc fig1171.ps

View File

@ -1,80 +0,0 @@
// This program replicates figure 11.3.1 from chapter 11 of RMT2 by Ljungqvist and Sargent
var c k;
varexo taui tauc tauk g;
parameters bet gam del alpha A;
bet=.95;
gam=2;
del=.2;
alpha=.33;
A=1;
model;
k=A*k(-1)^alpha+(1-del)*k(-1)-c-g;
c^(-gam)= bet*(c(+1)^(-gam))*((1+tauc(-1))/(1+tauc))*((1-taui)*(1-del)/(1-taui(-1))+
((1-tauk)/(1-taui(-1)))*alpha*A*k(-1)^(alpha-1));
end;
initval;
k=1.5;
c=0.6;
g = 0.2;
tauc = 0;
taui = 0;
tauk = 0;
end;
steady;
endval;
k=1.5;
c=0.6;
g =0.2;
tauc =0;
taui =0;
tauk =0;
end;
steady;
shocks;
var taui;
periods 10;
values 0.2;
end;
simul(periods=100);
co=ys0_(var_index('c'));
ko = ys0_(var_index('k'));
go = ex_(1,1);
rbig0=1/bet;
rbig=y_(var_index('c'),2:101).^(-gam)./(bet*y_(var_index('c'),3:102).^(-gam));
rq0=alpha*A*ko^(alpha-1);
rq=alpha*A*y_(var_index('k'),1:100).^(alpha-1);
wq0=A*ko^alpha-ko*alpha*A*ko^(alpha-1);
wq=A*y_(var_index('k'),1:100).^alpha-y_(var_index('k'),1:100).*alpha*A.*y_(var_index('k'),1:100).^(alpha-1);
sq0=(1-ex_(1,4))*A*alpha*ko^(alpha-1)+(1-del);
sq=(1-ex_(1:100,4)')*A*alpha.*y_(var_index('k'),1:100).^(alpha-1)+(1-del);
figure
subplot(2,3,1)
plot([ko*ones(100,1) y_(var_index('k'),1:100)' ])
title('k')
subplot(2,3,2)
plot([co*ones(100,1) y_(var_index('c'),2:101)' ])
title('c')
subplot(2,3,3)
plot([rbig0*ones(100,1) rbig' ])
title('R')
subplot(2,3,4)
plot([wq0*ones(100,1) wq' ])
title('w/q')
subplot(2,3,5)
plot([sq0*ones(100,1) sq' ])
title('s/q')
subplot(2,3,6)
plot([rq0*ones(100,1) rq' ])
title('r/q')
print -depsc fig1172.ps

View File

@ -1,41 +0,0 @@
periods 1000;
var c k lab z;
varexo e;
parameters bet the del alp tau rho s;
bet = 0.987;
the = 0.357;
del = 0.012;
alp = 0.4;
tau = 2;
rho = 0.95;
s = 0.007;
model;
(c^the*(1-lab)^(1-the))^(1-tau)/c=bet*((c(+1)^the*(1-lab(+1))^(1-the))^(1-tau)/c(+1))*(1+alp*exp(z(+1))*k^(alp-1)*lab(+1)^(1-alp)-del);
c=the/(1-the)*(1-alp)*exp(z)*k(-1)^alp*lab^(-alp)*(1-lab);
k=exp(z)*k(-1)^alp*lab^(1-alp)-c+(1-del)*k(-1);
z=rho*z(-1)+s*e;
end;
initval;
k = 1;
c = 1;
lab = 0.3;
z = 0;
e = 0;
end;
shocks;
var e;
stderr 1;
end;
steady;
stoch_simul(dr_algo=0,periods=1000,irf=40);
datasaver('simudata',[]);

View File

@ -1,44 +0,0 @@
var c k lab z;
varexo e;
parameters bet del alp rho the tau s;
bet = 0.987;
the = 0.357;
del = 0.012;
alp = 0.4;
tau = 2;
rho = 0.95;
s = 0.007;
model;
(c^the*(1-lab)^(1-the))^(1-tau)/c=bet*((c(+1)^the*(1-lab(+1))^(1-the))^(1-tau)/c(+1))*(1+alp*exp(z(+1))*k^(alp-1)*lab(+1)^(1-alp)-del);
c=the/(1-the)*(1-alp)*exp(z)*k(-1)^alp*lab^(-alp)*(1-lab);
k=exp(z)*k(-1)^alp*lab^(1-alp)-c+(1-del)*k(-1);
z=rho*z(-1)+s*e;
end;
initval;
k = 1;
c = 1;
lab = 0.3;
z = 0;
e = 0;
end;
shocks;
var e;
stderr 1;
end;
estimated_params;
stderr e, inv_gamma_pdf, 0.95,30;
rho, beta_pdf,0.93,0.02;
the, normal_pdf,0.3,0.05;
tau, normal_pdf,2.1,0.3;
end;
varobs c;
estimation(datafile=simudata,mh_replic=1000,mh_jscale=0.9,nodiagnostic);

View File

@ -1,62 +0,0 @@
// Estimates the Hansen Sargent and Tallarini model by maximum likelihood.
var s c h k i d dhat dbar mus muc muh gamma R;
varexo e_dhat e_dbar;
parameters lambda deltah deltak mud b bet phi1 phi2 cdbar alpha1 alpha2 cdhat;
bet=0.9971;
deltah=0.682;
lambda=2.443;
alpha1=0.813;
alpha2=0.189;
phi1=0.998;
phi2=0.704;
mud=13.710;
cdhat=0.155;
cdbar=0.108;
b=32;
deltak=0.975;
model(linear);
R=deltak+gamma;
R*bet=1;
s=(1+lambda)*c-lambda*h(-1);
h=deltah*h(-1)+(1-deltah)*c;
k=deltak*k(-1)+i;
c+i=gamma*k(-1)+d;
mus=b-s;
muc=(1+lambda)*mus+(1-deltah)*muh;
muh=bet*(deltah*muh(+1)-lambda*mus(+1));
muc=bet*R*muc(+1);
d=mud+dbar+dhat;
dbar=(phi1+phi2)*dbar(-1) - phi1*phi2*dbar(-2) + cdbar*e_dbar;
dhat=(alpha1+alpha2)*dhat(-1) - alpha1*alpha2*dhat(-2) + cdhat*e_dhat;
end;
shocks;
var e_dhat;
stderr 1;
var e_dbar;
stderr 1;
end;
stoch_simul(irf=0, periods=500);
// save dataHST c i;
estimated_params;
bet,uniform_pdf, .9499999999, 0.0288675134306;
deltah,uniform_pdf, 0.45, 0.202072594216;
lambda,uniform_pdf, 25.05, 14.4048892163;
alpha1,uniform_pdf, 0.8, 0.115470053809;
alpha2,uniform_pdf, 0.25, 0.144337567297;
phi1,uniform_pdf, 0.8, 0.115470053809;
phi2,uniform_pdf, 0.5, 0.288675134595;
mud,uniform_pdf, 24.5, 14.1450815951;
cdhat,uniform_pdf, 0.175, 0.0721687836487;
cdbar,uniform_pdf, 0.175, 0.0721687836487;
end;
varobs c i;
// estimation(datafile=dataHST,first_obs=1,nobs=500,mode_compute=4,MH_jscale=2);
estimation(datafile=dataHST,first_obs=1,nobs=500,mode_compute=4,mode_check,mh_replic=5000,mh_nblocks=1,mh_jscale=0.3);

View File

@ -1,62 +0,0 @@
// Estimates the Hansen Sargent and Tallarini model by maximum likelihood.
var s c h k i d dhat dbar mus muc muh gamma R;
varexo e_dhat e_dbar;
parameters lambda deltah deltak mud b bet phi1 phi2 cdbar alpha1 alpha2 cdhat;
bet=0.9971;
deltah=0.682;
lambda=2.443;
alpha1=0.813;
alpha2=0.189;
phi1=0.998;
phi2=0.704;
mud=13.710;
cdhat=0.155;
cdbar=0.108;
b=32;
deltak=0.975;
model(linear);
R=deltak+gamma;
R*bet=1;
s=(1+lambda)*c-lambda*h(-1);
h=deltah*h(-1)+(1-deltah)*c;
k=deltak*k(-1)+i;
c+i=gamma*k(-1)+d;
mus=b-s;
muc=(1+lambda)*mus+(1-deltah)*muh;
muh=bet*(deltah*muh(+1)-lambda*mus(+1));
muc=bet*R*muc(+1);
d=mud+dbar+dhat;
dbar=(phi1+phi2)*dbar(-1) - phi1*phi2*dbar(-2) + cdbar*e_dbar;
dhat=(alpha1+alpha2)*dhat(-1) - alpha1*alpha2*dhat(-2) + cdhat*e_dhat;
end;
shocks;
var e_dhat;
stderr 1;
var e_dbar;
stderr 1;
end;
// stoch_simul(irf=0, periods=500);
// save dataHST c i;
estimated_params;
bet, .91, .9, .99999;
deltah, 0.4, 0.1, 0.8;
lambda, 2, 0.1, 50;
alpha1, 0.8, 0.6, 0.99999;
alpha2, 0.2, 0.01, 0.5;
phi1, 0.8, 0.6, 0.99999;
phi2, 0.5, 0.3, 0.9;
mud, 10, 1, 50;
cdhat, 0.1, 0.05, 0.2;
cdbar, 0.1, 0.05, 0.2;
end;
varobs c i;
estimation(datafile=dataHST,first_obs=1,nobs=500,mode_compute=4,mode_check);

View File

@ -1,45 +0,0 @@
periods 200;
var c1 c2 k1 k2 a1 a2 y1 y2;
varexo e1 e2;
parameters gamma delta alpha beta rho;
gamma=2;
delta=.05;
alpha=.4;
beta=.98;
rho=.85;
model;
c1=c2;
exp(c1)^(-gamma) = beta*exp(c1(+1))^(-gamma)*(alpha*exp(a1(+1))*exp(k1)^(alpha-1)+1-delta);
exp(c2)^(-gamma) = beta*exp(c2(+1))^(-gamma)*(alpha*exp(a2(+1))*exp(k2)^(alpha-1)+1-delta);
exp(c1)+exp(c2)+exp(k1)-exp(k1(-1))*(1-delta)+exp(k2)-exp(k2(-1))*(1-delta) = exp(a1)*exp(k1(-1))^alpha+exp(a2)*exp(k2(-1))^alpha;
a1=rho*a1(-1)+e1;
a2=rho*a2(-1)+e2;
exp(y1)=exp(a1)*exp(k1(-1))^alpha;
exp(y2)=exp(a2)*exp(k2(-1))^alpha;
end;
initval;
y1=1.1;
y2=1.1;
k1=2.8;
k2=2.8;
c1=.8;
c2=.8;
a1=0;
a2=0;
e1=0;
e2=0;
end;
shocks;
var e1; stderr .08;
var e2; stderr .08;
end;
steady;
stoch_simul(dr_algo=0,periods=200);
datatomfile('simu2',[]);

View File

@ -1,51 +0,0 @@
periods 200;
var c1 c2 k1 k2 a1 a2 y1 y2;
varexo e1 e2;
parameters gamma delta alpha beta rho;
gamma=2;
delta=.05;
alpha=.4;
beta=.98;
rho=.85;
model;
c1=c2;
exp(c1)^(-gamma) = beta*exp(c1(+1))^(-gamma)*(alpha*exp(a1(+1))*exp(k1)^(alpha-1)+1-delta);
exp(c2)^(-gamma) = beta*exp(c2(+1))^(-gamma)*(alpha*exp(a2(+1))*exp(k2)^(alpha-1)+1-delta);
exp(c1)+exp(c2)+exp(k1)-exp(k1(-1))*(1-delta)+exp(k2)-exp(k2(-1))*(1-delta) = exp(a1)*exp(k1(-1))^alpha+exp(a2)*exp(k2(-1))^alpha;
a1=rho*a1(-1)+e1;
a2=rho*a2(-1)+e2;
exp(y1)=exp(a1)*exp(k1(-1))^alpha;
exp(y2)=exp(a2)*exp(k2(-1))^alpha;
end;
initval;
y1=1.1;
y2=1.1;
k1=2.8;
k2=2.8;
c1=.8;
c2=.8;
a1=0;
a2=0;
e1=0;
e2=0;
end;
shocks;
var e1; stderr .08;
var e2; stderr .08;
end;
steady;
estimated_params;
alpha, normal_pdf, .35, .05;
rho, normal_pdf, .8, .05;
stderr e1, inv_gamma_pdf, .09, 10;
stderr e2, inv_gamma_pdf, .09, 10;
end;
varobs y1 y2;
estimation(datafile=simu2,mh_replic=1200,mh_jscale=.7,nodiagnostic);

Binary file not shown.

Binary file not shown.

View File

@ -1,58 +0,0 @@
function datasaver (s,var_list)
% datasaver saves variables simulated by Dynare
% INPUT
% s: a string containing the name of the destination *.m file
% var_list: a character matrix containting the name of the variables
% to be saved (optional, default: all endogenous variables)
% OUTPUT
% none
% This is part of the examples included in F. Barillas, R. Colacito,
% S. Kitao, C. Matthes, T. Sargent and Y. Shin (2007) "Practicing
% Dynare".
% Modified by M. Juillard to make it also compatible with Dynare
% version 4 (12/4/07)
global lgy_ lgx_ y_ endo_nbr M_ oo_
% test and adapt for Dynare version 4
if isempty(lgy_)
lgy_ = M_.endo_names;
lgx_ + M_.exo_names;
y_ = oo_.endo_simul;
endo_nbr = M_.endo_nbr;
end
sm=[s,'.m'];
fid=fopen(sm,'w') ;
n = size(var_list,1);
if n == 0
n = endo_nbr;
ivar = [1:n]';
var_list = lgy_;
else
ivar=zeros(n,1);
for i=1:n
i_tmp = strmatch(var_list(i,:),lgy_,'exact');
if isempty(i_tmp)
error (['One of the specified variables does not exist']) ;
else
ivar(i) = i_tmp;
end
end
end
for i = 1:n
fprintf(fid,[lgy_(ivar(i),:), '=['],'\n') ;
fprintf(fid,'\n') ;
fprintf(fid,'%15.8g\n',y_(ivar(i),:)') ;
fprintf(fid,'\n') ;
fprintf(fid,'];\n') ;
fprintf(fid,'\n') ;
end
fclose(fid) ;
return ;

View File

@ -1,46 +0,0 @@
periods 5000;
var c k mu_c b d in;
varexo e_d e_b;
parameters R rho rho_b mu_b mu_d;
R=1.05;
//rho=0.9;
rho = 0;
mu_b=30;
mu_d=5;
rho_b = 0;
model(linear);
c+k = R*k(-1) + d;
mu_c = b - c;
mu_c=mu_c(+1);
d= rho*d(-1)+ mu_d*(1-rho) + e_d;
b=(1-rho_b)*mu_b+rho_b*b(-1)+e_b;
in = k - k(-1);
end;
//With a unit root, there exists no steady state. Use the following trick.
//Supply ONE solution corresponding to the initial k that you named.
initval;
d=mu_d;
k=100;
c = (R-1)*k +d;
mu_c=mu_b-c;
b=mu_b;
end;
shocks;
var e_d;
stderr 1;
var e_b;
stderr 1;
end;
steady;
check;
stoch_simul(dr_algo=1, order=1, periods=500, irf=10);
save data_hall.mat c in;

View File

@ -1,54 +0,0 @@
// Estimates the hall model using Bayesian method.
// hall1_estimate.mod estimates by maximum likelihood
periods 5000;
var c k mu_c b d in;
varexo e_d e_b;
parameters R rho rho_b mu_b mu_d;
R=1.05;
rho=0.9;
mu_b=30;
mu_d=5;
rho_b = 0.5;
model(linear);
c+k = R*k(-1) + d;
mu_c = b - c;
mu_c=mu_c(+1);
d= rho*d(-1)+ mu_d*(1-rho) + e_d;
b=(1-rho_b)*mu_b+rho_b*b(-1)+e_b;
in = k - k(-1);
end;
// Michel says that in a stationary linear model, this junk is irrelevant.
// But with a unit root, there exists no steady state. Use the following trick.
// Supply ONE solution corresponding to the initial k that you named. (Michel is a gneius!! Or so he thinks -- let's see
// if this works.)
initval;
d=mu_d;
k=100;
c = (R-1)*k +d;
mu_c=mu_b-c;
b=mu_b;
end;
shocks;
var e_d;
stderr 0.05;
var e_b;
stderr 0.05;
end;
estimated_params;
rho, beta_pdf, .1, 0.2;
R, normal_pdf, 1.02, 0.05;
end;
varobs c in;
// declare the unit root variables for diffuse filter
unit_root_vars k;
//estimation(datafile=data_hall,first_obs=101,nobs=200,mh_replic=1000,mh_nblocks=2,mh_jscale=2,mode_compute=0,mode_file=hall1_estimate2_mode);
estimation(datafile=data_hall,first_obs=101,nobs=200,mh_replic=1000,mh_nblocks=2,mh_jscale=2);

View File

@ -1,56 +0,0 @@
// Estimates the hall model using maximum likelihood. See hall1_estimateBayes.mod for Bayesian method
periods 5000;
var c k mu_c b d in;
varexo e_d e_b;
parameters R rho rho_b mu_b mu_d;
R=1.05;
rho=0.9;
mu_b=30;
mu_d=5;
rho_b = 0.5;
model(linear);
c+k = R*k(-1) + d;
mu_c = b - c;
mu_c=mu_c(+1);
d= rho*d(-1)+ mu_d*(1-rho) + e_d;
b=(1-rho_b)*mu_b+rho_b*b(-1)+e_b;
in = k - k(-1);
end;
// Michel says that in a stationary linear model, this junk is irrelevant.
// But with a unit root, there exists no steady state. Use the following trick.
// Supply ONE solution corresponding to the initial k that you named. (Michel is a gneius!! Or so he thinks -- let's see
// if this works.)
initval;
d=mu_d;
k=100;
c = (R-1)*k +d;
mu_c=mu_b-c;
b=mu_b;
end;
shocks;
var e_d;
stderr 0.05;
var e_b;
stderr 0.05;
end;
estimated_params;
// ML estimation setup
// parameter name, initial value, boundaries_low, ..._up;
// now we use the optimum results from csminwel for starting up Marco's
rho, -0.0159, -0.9, 0.9;
R, 1.0074, 0, 1.5;
end;
varobs c in;
// declare the unit root variables for diffuse filter
unit_root_vars k;
estimation(datafile=data_hall,first_obs=101,nobs=200,mh_replic=0,mode_compute=4,mode_check);
// Note: there is a problem when you try to use method 5. Tom, Jan 13, 2006

View File

@ -1,55 +0,0 @@
// Rosen schooling model
//
// The model is the one Sherwin Rosen showed Sargent in Sargent's Chicago office.
// The equations are
//
// s_t = a0 + a1*P_t + e_st ; flow supply of new engineers
//
// N_t = (1-delta)*N_{t-1} + s_{t-k} ; time to school engineers
//
// N_t = d0 - d1*W_t +e_dt ; demand for engineers
//
// P_t = (1-delta)*bet P_(t+1) + beta^k*W_(t+k); present value of wages of an engineer
periods 500;
var s N P W;
varexo e_s e_d;
parameters a0 a1 delta d0 d1 bet k;
a0=10;
a1=1;
d0=1000;
d1=1;
bet=.99;
delta=.02;
model(linear);
s=a0+a1*P+e_s; // flow supply of new entrants
N=(1-delta)*N(-1) + s(-4); // evolution of the stock
N=d0-d1*W+e_d; // stock demand equation
P=bet*(1-delta)*P(+1) + bet^4*(1-delta)^4*W(+4); // present value of wages
end;
initval;
s=0;
N=0;
P=0;
W=0;
end;
shocks;
var e_d;
stderr 1;
var e_s;
stderr 1;
end;
steady;
check;
stoch_simul(dr_algo=1, order=1, periods=500, irf=10);
//datasaver('simudata',[]);
save data_rosen.mat s N P W;

View File

@ -1,63 +0,0 @@
// Estimates the Rosen schooling model by maximum likelihood
// Rosen schooling model
//
// The model is the one Sherwin Rosen showed Sargent in Sargent's Chicago office.
// The equations are
//
// s_t = a0 + a1*P_t + e_st ; flow supply of new engineers
//
// N_t = (1-delta)*N_{t-1} + s_{t-k} ; time to school engineers
//
// N_t = d0 - d1*W_t +e_dt ; demand for engineers
//
// P_t = (1-delta)*bet P_(t+1) + W_(t+k); present value of wages of an engineer
periods 500;
var s N P W;
varexo e_s e_d;
parameters a0 a1 delta d0 d1 bet ;
a0=10;
a1=1;
d0=1000;
d1=1;
bet=.99;
delta=.02;
model(linear);
s=a0+a1*P+e_s; // flow supply of new entrants
N=(1-delta)*N(-1) + s(-4); // evolution of the stock
N=d0-d1*W+e_d; // stock demand equation
P=bet*(1-delta)*P(+1) + bet^4*(1-delta)^4*W(+4); // present value of wages
end;
initval;
s=0;
N=0;
P=0;
W=0;
end;
shocks;
var e_d;
stderr 1;
var e_s;
stderr 1;
end;
steady;
estimated_params;
a1, gamma_pdf, .5, .5;
d1, gamma_pdf, 2, .5;
end;
varobs W N;
estimation(datafile=data_rosen,first_obs=101,nobs=200,mh_replic=5000,mh_nblocks=2,mh_jscale=2,mode_compute=0,mode_file=rosen_estimateML_mode);

View File

@ -1,65 +0,0 @@
// Estimates the Rosen schooling model by maximum likelihood
// Rosen schooling model
//
// The model is the one Sherwin Rosen showed Sargent in Sargent's Chicago office.
// The equations are
//
// s_t = a0 + a1*P_t + e_st ; flow supply of new engineers
//
// N_t = (1-delta)*N_{t-1} + s_{t-k} ; time to school engineers
//
// N_t = d0 - d1*W_t +e_dt ; demand for engineers
//
// P_t = (1-delta)*bet P_(t+1) + W_(t+k); present value of wages of an engineer
periods 500;
var s N P W;
varexo e_s e_d;
parameters a0 a1 delta d0 d1 bet ;
a0=10;
a1=1;
d0=1000;
d1=1;
bet=.99;
delta=.02;
model(linear);
s=a0+a1*P+e_s; // flow supply of new entrants
N=(1-delta)*N(-1) + s(-4); // evolution of the stock
N=d0-d1*W+e_d; // stock demand equation
P=bet*(1-delta)*P(+1) + bet^4*(1-delta)^4*W(+4); // present value of wages
end;
initval;
s=0;
N=0;
P=0;
W=0;
end;
shocks;
var e_d;
stderr 1;
var e_s;
stderr 1;
end;
steady;
estimated_params;
a1, .5, -10, 10;
d1, .5, -20, 40; // these are the ranges for the parameters
end;
varobs W N;
estimation(datafile=data_rosen,first_obs=101,nobs=200,mh_replic=0,mode_compute=4,mode_check);

View File

@ -1,41 +0,0 @@
// this program solves and simulates the model in
// "The Demand for Money during Hyperinflations under Rational Expectations: I" by T. Sargent, IER 1977
// this program mainly serves as the data generating process for the estimation of the model in sargent77ML.mod and sargent77Bayes.mod
// variables are defined as follows:
// x=p_t-p_{t-1}, p being the log of the price level
// mu=m_t-m_{t-1}, m being the log of money supply
// note that in contrast to the paper eta and epsilon have variance 1 (they are multiplied by the standard deviations)
var x mu a1 a2;
varexo epsilon eta;
parameters alpha lambda sig_eta sig_epsilon;
lambda=.5921;
alpha=-2.344;
sig_eta= .001;
sig_epsilon= .001;
// the model equations are taken from equation (27) on page 69 of the paper
model;
x=x(-1)-lambda*a1(-1)+(1/(lambda+alpha*(1-lambda)))*sig_epsilon*epsilon-(1/(lambda+alpha*(1-lambda)))*sig_eta*eta;
mu=(1-lambda)*x(-1)+lambda*mu(-1)-lambda*a2(-1)+(1+alpha*(1-lambda))/(lambda+alpha*(1-lambda))*sig_epsilon*epsilon-(1-lambda)/(lambda+alpha*(1-lambda))*sig_eta*eta;
a1=(1/(lambda+alpha*(1-lambda)))*sig_epsilon*epsilon-(1/(lambda+alpha*(1-lambda)))*sig_eta*eta;
a2=(1+alpha*(1-lambda))/(lambda+alpha*(1-lambda))*sig_epsilon*epsilon-(1-lambda)/(lambda+alpha*(1-lambda))*sig_eta*eta;
end;
steady;
shocks;
var eta;
stderr 1;
var epsilon;
stderr 1;
end;
stoch_simul(dr_algo=1,drop=0, order=1, periods=33, irf=0);
save data_hyperinfl.mat x mu;

View File

@ -1,48 +0,0 @@
// this program estimates the model in
// "The Demand for Money during Hyperinflations under Rational Expectations: I" by T. Sargent, IER 1977 using Bayesian techniques
// variables are defined as follows:
// x=p_t-p_{t-1}, p being the log of the price level
// mu=m_t-m_{t-1}, m being the log of money supply
// note that in contrast to the paper eta and epsilon have variance 1 (they are multiplied by the standard deviations)
var x mu a1 a2;
varexo epsilon eta;
parameters alpha lambda sig_eta sig_epsilon;
lambda=.5921;
alpha=-2.344;
sig_eta=.001;
sig_epsilon=.001;
model;
x=x(-1)-lambda*a1(-1)+(1/(lambda+alpha*(1-lambda)))*sig_epsilon*epsilon-(1/(lambda+alpha*(1-lambda)))*sig_eta*eta;
mu=(1-lambda)*x(-1)+lambda*mu(-1)-lambda*a2(-1)+(1+alpha*(1-lambda))/(lambda+alpha*(1-lambda))*sig_epsilon*epsilon-(1-lambda)/(lambda+alpha*(1-lambda))*sig_eta*eta;
a1=(1/(lambda+alpha*(1-lambda)))*sig_epsilon*epsilon-(1/(lambda+alpha*(1-lambda)))*sig_eta*eta;
a2=(1+alpha*(1-lambda))/(lambda+alpha*(1-lambda))*sig_epsilon*epsilon-(1-lambda)/(lambda+alpha*(1-lambda))*sig_eta*eta;
end;
steady;
shocks;
var eta;
stderr 1;
var epsilon;
stderr 1;
end;
estimated_params;
// Bayesian setup
lambda, uniform_pdf, 0.68, .5;
alpha, uniform_pdf, -5, 2;
sig_eta, uniform_pdf, .5, 0.25;
sig_epsilon, uniform_pdf, .5, 0.25;
end;
varobs mu x;
unit_root_vars x;
estimation(datafile=cagan_data,first_obs=1,nobs=34,mh_replic=25000,mh_nblocks=1,mh_jscale=1,mode_compute=4);

View File

@ -1,52 +0,0 @@
// this program estimates the model in
// "The Demand for Money during Hyperinflations under Rational Expectations: I" by T. Sargent, IER 1977 using maximum likelihood
// variables are defined as follows:
// x=p_t-p_{t-1}, p being the log of the price level
// mu=m_t-m_{t-1}, m being the log of money supply
// note that in contrast to the paper eta and epsilon have variance 1 (they are multiplied by the standard deviations)
var x mu a1 a2;
varexo epsilon eta;
parameters alpha lambda sig_eta sig_epsilon;
lambda=.5921;
alpha=-2.344;
sig_eta=.001;
sig_epsilon=.001;
model;
x=x(-1)-lambda*a1(-1)+(1/(lambda+alpha*(1-lambda)))*sig_epsilon*epsilon-(1/(lambda+alpha*(1-lambda)))*sig_eta*eta;
mu=(1-lambda)*x(-1)+lambda*mu(-1)-lambda*a2(-1)+(1+alpha*(1-lambda))/(lambda+alpha*(1-lambda))*sig_epsilon*epsilon-(1-lambda)/(lambda+alpha*(1-lambda))*sig_eta*eta;
a1=(1/(lambda+alpha*(1-lambda)))*sig_epsilon*epsilon-(1/(lambda+alpha*(1-lambda)))*sig_eta*eta;
a2=(1+alpha*(1-lambda))/(lambda+alpha*(1-lambda))*sig_epsilon*epsilon-(1-lambda)/(lambda+alpha*(1-lambda))*sig_eta*eta;
end;
steady;
shocks;
var eta;
stderr 1;
var epsilon;
stderr 1;
end;
estimated_params;
// ML estimation setup
// parameter name, initial value, boundaries_low, ..._up;
lambda, .5, 0.25, 0.75;
alpha, -2, -8, -0.1;
sig_eta, .0001, 0.0001, 0.3;
sig_epsilon, .0001, 0.0001, 0.3;
end;
varobs mu x;
unit_root_vars x;
estimation(datafile=cagan_data,first_obs=1,nobs=34,mh_replic=0,mode_compute=4,mode_check);