Code factorization.

time-shift
Stéphane Adjemian (Scylla) 2017-07-27 15:40:19 +02:00
parent ccfd809dd0
commit 77b1d14083
4 changed files with 136 additions and 179 deletions

View File

@ -1,38 +1,25 @@
function DynareOutput = simul_backward_linear_model(initial_conditions, sample_size, DynareOptions, DynareModel, DynareOutput, innovations)
function DynareOutput = simul_backward_linear_model(varargin)
%@info:
%! @deftypefn {Function File} {@var{DynareOutput} =} simul_backward_nonlinear_model (@var{sample_size},@var{DynareOptions}, @var{DynareModel}, @var{DynareOutput})
%! @anchor{@simul_backward_nonlinear_model}
%! @sp 1
%! Simulates a stochastic non linear backward looking model with arbitrary precision (a deterministic solver is used).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item sample_size
%! Scalar integer, size of the sample to be generated.
%! @item DynareOptions
%! Matlab/Octave structure (Options used by Dynare).
%! @item DynareDynareModel
%! Matlab/Octave structure (Description of the model).
%! @item DynareOutput
%! Matlab/Octave structure (Results reported by Dynare).
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item DynareOutput
%! Matlab/Octave structure (Results reported by Dynare).
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 2
%! @strong{This function calls:}
%! @ref{dynTime}
%!
%! @end deftypefn
%@eod:
% Simulates a stochastic linear backward looking model.
%
% INPUTS
% - initialconditions [double] n*1 vector, initial conditions for the endogenous variables.
% - samplesize [integer] scalar, number of periods for the simulation.
% - DynareOptions [struct] Dynare's options_ global structure.
% - DynareModel [struct] Dynare's M_ global structure.
% - DynareOutput [struct] Dynare's oo_ global structure.
% - innovations [double] T*q matrix, innovations to be used for the simulation.
%
% OUTPUTS
% - DynareOutput [struct] Dynare's oo_ global structure.
%
% REMARKS
% [1] The innovations used for the simulation are saved in DynareOutput.exo_simul, and the resulting paths for the endogenous
% variables are saved in DynareOutput.endo_simul.
% [2] The last input argument is not mandatory. If absent we use random draws and rescale them with the informations provided
% through the shocks block.
% [3] If the first input argument is empty, the endogenous variables are initialized with 0, or if available with the informations
% provided thrtough the histval block.
% Copyright (C) 2012-2017 Dynare Team
%
@ -51,27 +38,15 @@ function DynareOutput = simul_backward_linear_model(initial_conditions, sample_s
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
number_of_shocks = size(DynareOutput.exo_simul,2);
% Get usefull vector of indices.
ny0 = nnz(DynareModel.lead_lag_incidence(2,:));
ny1 = nnz(DynareModel.lead_lag_incidence(1,:));
iy1 = find(DynareModel.lead_lag_incidence(1,:)>0);
idx = 1:DynareModel.endo_nbr;
jdx = idx+ny1;
hdx = 1:ny1;
% Get the name of the dynamic model routine.
model_dynamic = str2func([DynareModel.fname,'_dynamic']);
% initialization of vector y.
y = NaN(length(idx)+ny1,1);
[initialconditions, samplesize, innovations, DynareOptions, DynareModel, DynareOutput, nx, ny1, iy1, jdx, model_dynamic, y] = ...
simul_backward_model_init(varargin{:});
% initialization of the returned simulations.
DynareOutput.endo_simul = NaN(DynareModel.endo_nbr,sample_size+1);
if isempty(initial_conditions)
DynareOutput.endo_simul = NaN(DynareModel.endo_nbr,samplesize+1);
if isempty(initialconditions)
DynareOutput.endo_simul(:,1) = DynareOutput.steady_state;
else
DynareOutput.endo_simul(:,1) = initial_conditions;
DynareOutput.endo_simul(:,1) = initialconditions;
end
Y = DynareOutput.endo_simul;
@ -82,10 +57,10 @@ Y = DynareOutput.endo_simul;
DynareOutput.steady_state,1);
A0inv = inv(jacob(:,jdx));
A1 = jacob(:,nonzeros(DynareModel.lead_lag_incidence(1,:)));
B = jacob(:,end-number_of_shocks+1:end);
B = jacob(:,end-nx+1:end);
% Simulations
for it = 2:sample_size+1
for it = 2:samplesize+1
Y(:,it) = -A0inv*(cst + A1*Y(iy1,it-1) + B*DynareOutput.exo_simul(it,:)');
end

View File

@ -1,38 +1,25 @@
function DynareOutput = simul_backward_model(initial_conditions, sample_size, DynareOptions, DynareModel, DynareOutput, innovations)
function DynareOutput = simul_backward_model(varargin)
%@info:
%! @deftypefn {Function File} {@var{DynareOutput} =} simul_backward_nonlinear_model (@var{sample_size},@var{DynareOptions}, @var{DynareModel}, @var{DynareOutput})
%! @anchor{@simul_backward_nonlinear_model}
%! @sp 1
%! Simulates a stochastic non linear backward looking model with arbitrary precision (a deterministic solver is used).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item sample_size
%! Scalar integer, size of the sample to be generated.
%! @item DynareOptions
%! Matlab/Octave structure (Options used by Dynare).
%! @item DynareDynareModel
%! Matlab/Octave structure (Description of the model).
%! @item DynareOutput
%! Matlab/Octave structure (Results reported by Dynare).
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item DynareOutput
%! Matlab/Octave structure (Results reported by Dynare).
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 2
%! @strong{This function calls:}
%! @ref{dynTime}
%!
%! @end deftypefn
%@eod:
% Simulates a stochastic backward looking model (with arbitrary precision).
%
% INPUTS
% - initialconditions [double] n*1 vector, initial conditions for the endogenous variables.
% - samplesize [integer] scalar, number of periods for the simulation.
% - DynareOptions [struct] Dynare's options_ global structure.
% - DynareModel [struct] Dynare's M_ global structure.
% - DynareOutput [struct] Dynare's oo_ global structure.
% - innovations [double] T*q matrix, innovations to be used for the simulation.
%
% OUTPUTS
% - DynareOutput [struct] Dynare's oo_ global structure.
%
% REMARKS
% [1] The innovations used for the simulation are saved in DynareOutput.exo_simul, and the resulting paths for the endogenous
% variables are saved in DynareOutput.endo_simul.
% [2] The last input argument is not mandatory. If absent we use random draws and rescale them with the informations provided
% through the shocks block.
% [3] If the first input argument is empty, the endogenous variables are initialized with 0, or if available with the informations
% provided thrtough the histval block.
% Copyright (C) 2012-2017 Dynare Team
%
@ -51,48 +38,10 @@ function DynareOutput = simul_backward_model(initial_conditions, sample_size, Dy
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if DynareModel.maximum_lead
error(['simul_backward_nonlinear_model:: The specified model is not backward looking!'])
end
if nargin<6
% Set the covariance matrix of the structural innovations.
variances = diag(DynareModel.Sigma_e);
number_of_shocks = length(DynareModel.Sigma_e);
positive_var_indx = find(variances>0);
effective_number_of_shocks = length(positive_var_indx);
covariance_matrix = DynareModel.Sigma_e(positive_var_indx,positive_var_indx);
covariance_matrix_upper_cholesky = chol(covariance_matrix);
% Set seed to its default state.
if DynareOptions.bnlms.set_dynare_seed_to_default
set_dynare_seed('default');
end
% Simulate structural innovations.
switch DynareOptions.bnlms.innovation_distribution
case 'gaussian'
DynareOutput.bnlms.shocks = randn(sample_size,effective_number_of_shocks)*covariance_matrix_upper_cholesky;
otherwise
error(['simul_backward_nonlinear_model:: ' DynareOption.bnlms.innovation_distribution ' distribution for the structural innovations is not (yet) implemented!'])
end
% Put the simulated innovations in DynareOutput.exo_simul.
DynareOutput.exo_simul = zeros(sample_size, number_of_shocks);
DynareOutput.exo_simul(2:end,positive_var_indx) = DynareOutput.bnlms.shocks;
if isfield(DynareModel,'exo_histval') && ~isempty(DynareModel.exo_histval)
DynareOutput.exo_simul = [M_.exo_histval; DynareOutput.exo_simul];
else
DynareOutput.exo_simul = [zeros(1,number_of_shocks); DynareOutput.exo_simul];
end
else
number_of_shocks = size(innovations,2);
DynareOutput.exo_simul = innovations;
end
[initialconditions, samplesize, innovations, DynareOptions, DynareModel, DynareOutput] = simul_backward_model_init(varargin{:});
if DynareOptions.linear
DynareOutput = simul_backward_linear_model(initial_conditions, sample_size, DynareOptions, ...
DynareModel, DynareOutput, innovations);
DynareOutput = simul_backward_linear_model(initialconditions, samplesize, DynareOptions, DynareModel, DynareOutput, innovations);
else
DynareOutput = simul_backward_nonlinear_model(initial_conditions, sample_size, DynareOptions, ...
DynareModel, DynareOutput, innovations);
DynareOutput = simul_backward_nonlinear_model(initialconditions, samplesize, DynareOptions, DynareModel, DynareOutput, innovations);
end

View File

@ -0,0 +1,77 @@
function [initialconditions, samplesize, innovations, DynareOptions, DynareModel, DynareOutput, nx, ny1, iy1, jdx, model_dynamic, y] = simul_backward_model_init(varargin)
% Initialization of the routines simulating backward models.
% Copyright (C) 2012-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
initialconditions = varargin{1};
samplesize = varargin{2};
DynareOptions = varargin{3};
DynareModel = varargin{4};
DynareOutput = varargin{5};
if DynareModel.maximum_lead
error('simul_backward_nonlinear_model:: The specified model is not backward looking!')
end
if nargin<6
% Set the covariance matrix of the structural innovations.
variances = diag(DynareModel.Sigma_e);
number_of_shocks = length(DynareModel.Sigma_e);
positive_var_indx = find(variances>0);
effective_number_of_shocks = length(positive_var_indx);
covariance_matrix = DynareModel.Sigma_e(positive_var_indx,positive_var_indx);
covariance_matrix_upper_cholesky = chol(covariance_matrix);
% Set seed to its default state.
if DynareOptions.bnlms.set_dynare_seed_to_default
set_dynare_seed('default');
end
% Simulate structural innovations.
switch DynareOptions.bnlms.innovation_distribution
case 'gaussian'
DynareOutput.bnlms.shocks = randn(samplesize,effective_number_of_shocks)*covariance_matrix_upper_cholesky;
otherwise
error(['simul_backward_nonlinear_model:: ' DynareOption.bnlms.innovation_distribution ' distribution for the structural innovations is not (yet) implemented!'])
end
% Put the simulated innovations in DynareOutput.exo_simul.
DynareOutput.exo_simul = zeros(samplesize,number_of_shocks);
DynareOutput.exo_simul(:,positive_var_indx) = DynareOutput.bnlms.shocks;
if isfield(DynareModel,'exo_histval') && ~ isempty(DynareModel.exo_histval)
DynareOutput.exo_simul = [transpose(DynareModel.exo_histval); DynareOutput.exo_simul];
else
DynareOutput.exo_simul = [zeros(1,number_of_shocks); DynareOutput.exo_simul];
end
innovations = DynareOutput.exo_simul;
else
innovations = varargin{6};
DynareOutput.exo_simul = innovations; % innovations
end
if nargout>6
nx = size(DynareOutput.exo_simul,2);
ny0 = nnz(DynareModel.lead_lag_incidence(2,:));
ny1 = nnz(DynareModel.lead_lag_incidence(1,:));
iy1 = find(DynareModel.lead_lag_incidence(1,:)>0);
idx = 1:DynareModel.endo_nbr;
jdx = idx+ny1;
% Get the name of the dynamic model routine.
model_dynamic = str2func([DynareModel.fname,'_dynamic']);
% initialization of vector y.
y = NaN(length(idx)+ny1,1);
end

View File

@ -1,4 +1,4 @@
function DynareOutput = simul_backward_nonlinear_model(initial_conditions, sample_size, DynareOptions, DynareModel, DynareOutput, innovations)
function DynareOutput = simul_backward_nonlinear_model(varargin)
% Simulates a stochastic non linear backward looking model with arbitrary precision (a deterministic solver is used).
%
@ -38,58 +38,14 @@ function DynareOutput = simul_backward_nonlinear_model(initial_conditions, sampl
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if DynareModel.maximum_lead
error('simul_backward_nonlinear_model:: The specified model is not backward looking!')
end
[initialconditions, samplesize, innovations, DynareOptions, DynareModel, DynareOutput, nx, ny1, iy1, jdx, model_dynamic, y] = ...
simul_backward_model_init(varargin{:});
if nargin<6
% Set the covariance matrix of the structural innovations.
variances = diag(DynareModel.Sigma_e);
number_of_shocks = length(DynareModel.Sigma_e);
positive_var_indx = find(variances>0);
effective_number_of_shocks = length(positive_var_indx);
covariance_matrix = DynareModel.Sigma_e(positive_var_indx,positive_var_indx);
covariance_matrix_upper_cholesky = chol(covariance_matrix);
% Set seed to its default state.
if DynareOptions.bnlms.set_dynare_seed_to_default
set_dynare_seed('default');
end
% Simulate structural innovations.
switch DynareOptions.bnlms.innovation_distribution
case 'gaussian'
DynareOutput.bnlms.shocks = randn(sample_size,effective_number_of_shocks)*covariance_matrix_upper_cholesky;
otherwise
error(['simul_backward_nonlinear_model:: ' DynareOption.bnlms.innovation_distribution ' distribution for the structural innovations is not (yet) implemented!'])
end
% Put the simulated innovations in DynareOutput.exo_simul.
DynareOutput.exo_simul = zeros(sample_size,number_of_shocks);
DynareOutput.exo_simul(:,positive_var_indx) = DynareOutput.bnlms.shocks;
if isfield(DynareModel,'exo_histval') && ~ isempty(DynareModel.exo_histval)
DynareOutput.exo_simul = [transpose(DynareModel.exo_histval); DynareOutput.exo_simul];
else
DynareOutput.exo_simul = [zeros(1,number_of_shocks); DynareOutput.exo_simul];
end
else
DynareOutput.exo_simul = innovations;
end
% Get usefull vector of indices.
ny1 = nnz(DynareModel.lead_lag_incidence(1,:));
iy1 = find(DynareModel.lead_lag_incidence(1,:)>0);
idx = 1:DynareModel.endo_nbr;
jdx = idx+ny1;
hdx = 1:ny1;
% Get the name of the dynamic model routine.
model_dynamic = str2func([DynareModel.fname,'_dynamic']);
model_dynamic_s = str2func('dynamic_backward_model_for_simulation');
% initialization of vector y.
y = NaN(length(idx)+ny1,1);
% initialization of the returned simulations.
DynareOutput.endo_simul = NaN(DynareModel.endo_nbr,sample_size+1);
if isempty(initial_conditions)
DynareOutput.endo_simul = NaN(DynareModel.endo_nbr,samplesize+1);
if isempty(initialconditions)
if isfield(DynareModel,'endo_histval') && ~isempty(DynareModel.endo_histval)
DynareOutput.endo_simul(:,1:DynareModel.maximum_lag) = DynareModel.endo_histval;
else
@ -97,13 +53,13 @@ if isempty(initial_conditions)
DynareOutput.endo_simul(:,1) = 0;
end
else
DynareOutput.endo_simul(:,1) = initial_conditions;
DynareOutput.endo_simul(:,1) = initialconditions;
end
Y = DynareOutput.endo_simul;
% Simulations (call a Newton-like algorithm for each period).
for it = 2:sample_size+1
for it = 2:samplesize+1
ylag = Y(iy1,it-1); % Set lagged variables.
y = Y(:,it-1); % A good guess for the initial conditions is the previous values for the endogenous variables.
Y(:,it) = dynare_solve(model_dynamic_s, y, DynareOptions, model_dynamic, ylag, DynareOutput.exo_simul, DynareModel.params, DynareOutput.steady_state, it+(DynareModel.maximum_exo_lag-1));