One file per method.

new-samplers
Stéphane Adjemian (Ryûk) 2023-07-11 15:30:07 +02:00 committed by Stéphane Adjemian (Guts)
parent 3606b10f05
commit 61498e644a
Signed by: stepan
GPG Key ID: 295C1FE89E17EB3C
11 changed files with 1272 additions and 932 deletions

View File

@ -0,0 +1,35 @@
function lpd = densities(o, X)
% Evaluate the logged prior densities at X (for each column).
%
% INPUTS
% - o [dprior]
% - X [double] m×n matrix, n points where the prior density is evaluated.
%
% OUTPUTS
% - lpd [double] 1×n, values of the logged prior density at X.
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
n = columns(X);
lpd = NaN(1, n);
parfor i=1:n
lpd(i) = density(o, X(:,i));
end

384
matlab/@dprior/density.m Normal file
View File

@ -0,0 +1,384 @@
function [lpd, dlpd, d2lpd, info] = density(o, x)
% Evaluate the logged prior density at x.
%
% INPUTS
% - o [dprior]
% - x [double] m×1 vector, point where the prior density is evaluated.
%
% OUTPUTS
% - lpd [double] scalar, value of the logged prior density at x.
% - dlpd [double] m×1 vector, first order derivatives.
% - d2lpd [double] m×1 vector, second order derivatives.
%
% REMARKS
% Second order derivatives holder, d2lpd, has the same rank and shape than dlpd because the priors are
% independent (we would have to use a matrix if non orthogonal priors were allowed in Dynare).
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> lpd = Prior.dsensity(x)
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
lpd = 0.0;
if nargout>1
dlpd = zeros(1, length(x));
if nargout>2
d2lpd = dlpd;
if nargout>3
info = [];
end
end
end
if o.isuniform
if any(x(o.iduniform)-o.p3(o.iduniform)<0) || any(x(o.iduniform)-o.p4(o.iduniform)>0)
lpd = -Inf ;
if nargout==4
info = o.iduniform((x(o.iduniform)-o.p3(o.iduniform)<0) || (x(o.iduniform)-o.p4(o.iduniform)>0));
end
return
end
lpd = lpd - sum(log(o.p4(o.iduniform)-o.p3(o.iduniform))) ;
if nargout>1
dlpd(o.iduniform) = zeros(length(o.iduniform), 1);
if nargout>2
d2lpd(o.iduniform) = zeros(length(o.iduniform), 1);
end
end
end
if o.isgaussian
switch nargout
case 1
lpd = lpd + sum(lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian)));
case 2
[tmp, dlpd(o.idgaussian)] = lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian));
lpd = lpd + sum(tmp);
case {3,4}
[tmp, dlpd(o.idgaussian), d2lpd(o.idgaussian)] = lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian));
lpd = lpd + sum(tmp);
end
end
if o.isgamma
switch nargout
case 1
lpd = lpd + sum(lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idgamma), d2lpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idgamma), d2lpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idgamma(isinf(tmp));
return
end
end
end
if o.isbeta
switch nargout
case 1
lpd = lpd + sum(lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idbeta), d2lpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idbeta), d2lpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idbeta(isinf(tmp));
return
end
end
end
if o.isinvgamma1
switch nargout
case 1
lpd = lpd + sum(lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idinvgamma1), d2lpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idinvgamma1), d2lpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idinvgamma1(isinf(tmp));
return
end
end
end
if o.isinvgamma2
switch nargout
case 1
lpd = lpd + sum(lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idinvgamma2), d2lpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idinvgamma2), d2lpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idinvgamma2(isinf(tmp));
return
end
end
end
if o.isweibull
switch nargout
case 1
lpd = lpd + sum(lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idweibull), d2lpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idweibull), d2lpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idweibull(isinf(tmp));
return
end
end
end
return % --*-- Unit tests --*--
%@test:1
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;
% Call the tested routine
try
Prior = dprior(BayesInfo, prior_trunc, false);
% Compute density at the prior mode
lpdstar = Prior.density(p5);
% Draw random deviates in a loop and evaluate the density.
LPD = NaN(10000,1);
parfor i = 1:10000
x = Prior.draw();
LPD(i) = Prior.density(x);
end
t(1) = true;
catch
t(1) = false;
end
if t(1)
t(2) = all(LPD<=lpdstar);
end
T = all(t);
%@eof:1
%@test:2
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;
% Call the tested routine
try
Prior = dprior(BayesInfo, prior_trunc, false);
mu = NaN(14,1);
std = NaN(14,1);
for i=1:14
% Define conditional density (it's also a marginal since priors are orthogonal)
f = @(x) exp(Prior.densities(substitute(p5, i, x)));
% TODO: Check the version of Octave we use (integral is available as a compatibility wrapper in latest Octave version)
m = integral(f, p3(i), p4(i));
density = @(x) f(x)/m; % rescaling is required since the probability mass depends on the conditioning.
% Compute the conditional expectation
mu(i) = integral(@(x) x.*density(x), p3(i), p4(i));
std(i) = sqrt(integral(@(x) ((x-mu(i)).^2).*density(x), p3(i), p4(i)));
end
t(1) = true;
catch
t(1) = false;
end
if t(1)
t(2) = all(abs(mu-.4)<1e-6);
t(3) = all(abs(std-.2)<1e-6);
end
T = all(t);
%@eof:2

View File

@ -1,5 +1,22 @@
classdef dprior < handle
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
properties
p1 = []; % Prior mean.
p2 = []; % Prior stddev.
@ -42,6 +59,9 @@ classdef dprior < handle
%
% REQUIREMENTS
% None.
if ~nargin % Empty object
return
end
if isfield(bayestopt_, 'p1'), o.p1 = bayestopt_.p1; end
if isfield(bayestopt_, 'p2'), o.p2 = bayestopt_.p2; end
if isfield(bayestopt_, 'p3'), o.p3 = bayestopt_.p3; end
@ -88,562 +108,8 @@ classdef dprior < handle
end
end % dprior (constructor)
function p = subsref(o, S)
switch S(1).type
case '.'
if ismember(S(1).subs, {'p1','p2','p3','p4','p5','p6','p7','lb','ub'})
p = builtin('subsref', o, S(1));
elseif ismember(S(1).subs, {'draw'})
p = feval(S(1).subs, o);
elseif ismember(S(1).subs, {'draws', 'density', 'densities', 'moments'})
p = feval(S(1).subs, o , S(2).subs{:});
elseif ismember(S(1).subs, {'mean', 'median', 'variance', 'mode'})
if (length(S)==2 && isempty(S(2).subs)) || length(S)==1
p = feval(S(1).subs, o);
else
p = feval(S(1).subs, o , S(2).subs{:});
end
else
error('dprior::subsref: unknown method (%s).', S(1).subs)
end
otherwise
error('dprior::subsref: %s indexing not implemented.', S(1).type)
end
end
function p = draw(o)
% Return a random draw from the prior distribution.
%
% INPUTS
% - o [dprior]
%
% OUTPUTS
% - p [double] m×1 vector, random draw from the prior distribution (m is the number of estimated parameters).
%
% REMARKS
% None.
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> d = Prior.draw()
p = NaN(rows(o.lb), 1);
if o.isuniform
p(o.iduniform) = rand(length(o.iduniform),1).*(o.p4(o.iduniform)-o.p3(o.iduniform)) + o.p3(o.iduniform);
oob = find( (p(o.iduniform)>o.ub(o.iduniform)) | (p(o.iduniform)<o.lb(o.iduniform)));
while ~isempty(oob)
p(o.iduniform) = rand(length(o.iduniform), 1).*(o.p4(o.iduniform)-o.p3(o.iduniform)) + o.p3(o.iduniform);
oob = find( (p(o.iduniform)>o.ub(o.iduniform)) | (p(o.iduniform)<o.lb(o.iduniform)));
end
end
if o.isgaussian
p(o.idgaussian) = randn(length(o.idgaussian), 1).*o.p7(o.idgaussian) + o.p6(o.idgaussian);
oob = find( (p(o.idgaussian)>o.ub(o.idgaussian)) | (p(o.idgaussian)<o.lb(o.idgaussian)));
while ~isempty(oob)
p(o.idgaussian(oob)) = randn(length(o.idgaussian(oob)), 1).*o.p7(o.idgaussian(oob)) + o.p6(o.idgaussian(oob));
oob = find( (p(o.idgaussian)>o.ub(o.idgaussian)) | (p(o.idgaussian)<o.lb(o.idgaussian)));
end
end
if o.isgamma
p(o.idgamma) = gamrnd(o.p6(o.idgamma), o.p7(o.idgamma))+o.p3(o.idgamma);
oob = find( (p(o.idgamma)>o.ub(o.idgamma)) | (p(o.idgamma)<o.lb(o.idgamma)));
while ~isempty(oob)
p(o.idgamma(oob)) = gamrnd(o.p6(o.idgamma(oob)), o.p7(o.idgamma(oob)))+o.p3(o.idgamma(oob));
oob = find( (p(o.idgamma)>o.ub(o.idgamma)) | (p(o.idgamma)<o.lb(o.idgamma)));
end
end
if o.isbeta
p(o.idbeta) = (o.p4(o.idbeta)-o.p3(o.idbeta)).*betarnd(o.p6(o.idbeta), o.p7(o.idbeta))+o.p3(o.idbeta);
oob = find( (p(o.idbeta)>o.ub(o.idbeta)) | (p(o.idbeta)<o.lb(o.idbeta)));
while ~isempty(oob)
p(o.idbeta(oob)) = (o.p4(o.idbeta(oob))-o.p3(o.idbeta(oob))).*betarnd(o.p6(o.idbeta(oob)), o.p7(o.idbeta(oob)))+o.p3(o.idbeta(oob));
oob = find( (p(o.idbeta)>o.ub(o.idbeta)) | (p(o.idbeta)<o.lb(o.idbeta)));
end
end
if o.isinvgamma1
p(o.idinvgamma1) = ...
sqrt(1./gamrnd(o.p7(o.idinvgamma1)/2, 2./o.p6(o.idinvgamma1)))+o.p3(o.idinvgamma1);
oob = find( (p(o.idinvgamma1)>o.ub(o.idinvgamma1)) | (p(o.idinvgamma1)<o.lb(o.idinvgamma1)));
while ~isempty(oob)
p(o.idinvgamma1(oob)) = ...
sqrt(1./gamrnd(o.p7(o.idinvgamma1(oob))/2, 2./o.p6(o.idinvgamma1(oob))))+o.p3(o.idinvgamma1(oob));
oob = find( (p(o.idinvgamma1)>o.ub(o.idinvgamma1)) | (p(o.idinvgamma1)<o.lb(o.idinvgamma1)));
end
end
if o.isinvgamma2
p(o.idinvgamma2) = ...
1./gamrnd(o.p7(o.idinvgamma2)/2, 2./o.p6(o.idinvgamma2))+o.p3(o.idinvgamma2);
oob = find( (p(o.idinvgamma2)>o.ub(o.idinvgamma2)) | (p(o.idinvgamma2)<o.lb(o.idinvgamma2)));
while ~isempty(oob)
p(o.idinvgamma2(oob)) = ...
1./gamrnd(o.p7(o.idinvgamma2(oob))/2, 2./o.p6(o.idinvgamma2(oob)))+o.p3(o.idinvgamma2(oob));
oob = find( (p(o.idinvgamma2)>o.ub(o.idinvgamma2)) | (p(o.idinvgamma2)<o.lb(o.idinvgamma2)));
end
end
if o.isweibull
p(o.idweibull) = wblrnd(o.p7(o.idweibull), o.p6(o.idweibull)) + o.p3(o.idweibull);
oob = find( (p(o.idweibull)>o.ub(o.idweibull)) | (p(o.idweibull)<o.lb(o.idweibull)));
while ~isempty(oob)
p(o.idweibull(oob)) = wblrnd(o.p7(o.idweibull(oob)), o.p6(o.idweibull(oob)))+o.p3(o.idweibull(oob));
oob = find( (p(o.idweibull)>o.ub(o.idweibull)) | (p(o.idweibull)<o.lb(o.idweibull)));
end
end
end % draw
function P = draws(o, n)
% Return n independent random draws from the prior distribution.
%
% INPUTS
% - o [dprior]
%
% OUTPUTS
% - P [double] m×n matrix, random draw from the prior distribution.
%
% REMARKS
% If the Parallel Computing Toolbox is available, the main loop is run in parallel.
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> Prior.draws(1e6)
P = NaN(rows(o.lb), 1);
parfor i=1:n
P(:,i) = draw(o);
end
end % draws
function [lpd, dlpd, d2lpd, info] = density(o, x)
% Evaluate the logged prior density at x.
%
% INPUTS
% - o [dprior]
% - x [double] m×1 vector, point where the prior density is evaluated.
%
% OUTPUTS
% - lpd [double] scalar, value of the logged prior density at x.
% - dlpd [double] m×1 vector, first order derivatives.
% - d2lpd [double] m×1 vector, second order derivatives.
%
% REMARKS
% Second order derivatives holder, d2lpd, has the same rank and shape than dlpd because the priors are
% independent (we would have to use a matrix if non orthogonal priors were allowed in Dynare).
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> lpd = Prior.dsensity(x)
lpd = 0.0;
if nargout>1
dlpd = zeros(1, length(x));
if nargout>2
d2lpd = dlpd;
if nargout>3
info = [];
end
end
end
if o.isuniform
if any(x(o.iduniform)-o.p3(o.iduniform)<0) || any(x(o.iduniform)-o.p4(o.iduniform)>0)
lpd = -Inf ;
if nargout==4
info = o.iduniform((x(o.iduniform)-o.p3(o.iduniform)<0) || (x(o.iduniform)-o.p4(o.iduniform)>0));
end
return
end
lpd = lpd - sum(log(o.p4(o.iduniform)-o.p3(o.iduniform))) ;
if nargout>1
dlpd(o.iduniform) = zeros(length(o.iduniform), 1);
if nargout>2
d2lpd(o.iduniform) = zeros(length(o.iduniform), 1);
end
end
end
if o.isgaussian
switch nargout
case 1
lpd = lpd + sum(lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian)));
case 2
[tmp, dlpd(o.idgaussian)] = lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian));
lpd = lpd + sum(tmp);
case {3,4}
[tmp, dlpd(o.idgaussian), d2lpd(o.idgaussian)] = lpdfnorm(x(o.idgaussian), o.p6(o.idgaussian), o.p7(o.idgaussian));
lpd = lpd + sum(tmp);
end
end
if o.isgamma
switch nargout
case 1
lpd = lpd + sum(lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idgamma), d2lpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idgamma), d2lpd(o.idgamma)] = lpdfgam(x(o.idgamma)-o.p3(o.idgamma), o.p6(o.idgamma), o.p7(o.idgamma));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idgamma(isinf(tmp));
return
end
end
end
if o.isbeta
switch nargout
case 1
lpd = lpd + sum(lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idbeta), d2lpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idbeta), d2lpd(o.idbeta)] = lpdfgbeta(x(o.idbeta), o.p6(o.idbeta), o.p7(o.idbeta), o.p3(o.idbeta), o.p4(o.idbeta));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idbeta(isinf(tmp));
return
end
end
end
if o.isinvgamma1
switch nargout
case 1
lpd = lpd + sum(lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idinvgamma1), d2lpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idinvgamma1), d2lpd(o.idinvgamma1)] = lpdfig1(x(o.idinvgamma1)-o.p3(o.idinvgamma1), o.p6(o.idinvgamma1), o.p7(o.idinvgamma1));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idinvgamma1(isinf(tmp));
return
end
end
end
if o.isinvgamma2
switch nargout
case 1
lpd = lpd + sum(lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idinvgamma2), d2lpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idinvgamma2), d2lpd(o.idinvgamma2)] = lpdfig2(x(o.idinvgamma2)-o.p3(o.idinvgamma2), o.p6(o.idinvgamma2), o.p7(o.idinvgamma2));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idinvgamma2(isinf(tmp));
return
end
end
end
if o.isweibull
switch nargout
case 1
lpd = lpd + sum(lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull)));
if isinf(lpd), return, end
case 2
[tmp, dlpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 3
[tmp, dlpd(o.idweibull), d2lpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
lpd = lpd + sum(tmp);
if isinf(lpd), return, end
case 4
[tmp, dlpd(o.idweibull), d2lpd(o.idweibull)] = lpdfgweibull(x(o.idweibull), o.p6(o.idweibull), o.p7(o.idweibull));
lpd = lpd + sum(tmp);
if isinf(lpd)
info = o.idweibull(isinf(tmp));
return
end
end
end
end % density
function lpd = densities(o, X)
% Evaluate the logged prior densities at X (for each column).
%
% INPUTS
% - o [dprior]
% - X [double] m×n matrix, n points where the prior density is evaluated.
%
% OUTPUTS
% - lpd [double] 1×n, values of the logged prior density at X.
n = columns(X);
lpd = NaN(1, n);
parfor i=1:n
lpd(i) = density(o, X(:,i));
end
end % densities
function o = moments(o, name)
% Compute the prior moments.
%
% INPUTS
% - o [dprior]
%
% OUTPUTS
% - o [dprior]
switch name
case 'mean'
m = o.p1;
case 'median'
m = o.p11;
case 'std'
m = o.p2;
case 'mode'
m = o.p5;
otherwise
error('%s is not an implemented moemnt.', name)
end
id = isnan(m);
if any(id)
% For some parameters the prior mean is not defined.
% We compute the first order moment from the
% hyperparameters, if the hyperparameters are not
% available an error is thrown.
if o.isuniform
jd = intersect(o.iduniform, find(id));
if ~isempty(jd)
if any(isnan(o.p3(jd))) || any(isnan(o.p4(jd)))
error('dprior::mean: Some hyperparameters are missing (uniform distribution).')
end
switch name
case 'mean'
m(jd) = o.p3(jd) + .5*(o.p4(jd)-o.p3(jd));
case 'median'
m(jd) = o.p3(jd) + .5*(o.p4(jd)-o.p3(jd));
case 'std'
m(jd) = (o.p4(jd)-o.p3(jd))/sqrt(12);
case 'mode' % Actually we have a continuum of modes with the uniform distribution.
m(jd) = o.p3(jd) + .5*(o.p4(jd)-o.p3(jd));
end
end
end
if o.isgaussian
jd = intersect(o.idgaussian, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd)))
error('dprior::mean: Some hyperparameters are missing (gaussian distribution).')
end
switch name
case 'mean'
m(jd) = o.p6(jd);
case 'median'
m(jd) = o.p6(jd);
case 'std'
m(jd) = o.p7(jd);
case 'mode' % Actually we have a continuum of modes with the uniform distribution.
m(jd) = o.p6(jd);
end
end
end
if o.isgamma
jd = intersect(o.idgamma, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (gamma distribution).')
end
% α → o.p6, β → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + o.p6(jd).*o.p7(jd);
case 'median'
m(jd) = o.p3(jd) + gaminv(.5, o.p6(jd), o.p7(jda));
case 'std'
m(jd) = sqrt(o.p6(jd)).*o.p7(jd);
case 'mode'
m(jd) = 0;
hd = o.p6(jd)>1;
m(jd(hd)) = (o.p6(jd(hd))-1).*o.p7(jd(hd));
end
end
end
if o.isbeta
jd = intersect(o.idbeta, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd))) || any(isnan(o.p4(jd)))
error('dprior::mean: Some hyperparameters are missing (beta distribution).')
end
% α → o.p6, β → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + (o.p6(jd)./(o.p6(jd)+o.p7(jd))).*(o.p4(jd)-o.p3(jd));
case 'median'
m(jd) = o.p3(jd) + betainv(.5, o.p6(jd), o.p7(jd)).*(o.p4(jd)-o.p3(jd));
case 'std'
m(jd) = (o.p4(jd)-o.p3(jd)).*sqrt(o.p6(jd).*o.p7(jd)./((o.p6(jd)+o.p7(jd)).^2.*(o.p6(jd)+o.p7(jd)+1)));
case 'mode'
h0 = true(jd, 1);
h1 = o.p6(jd)<=1 & o.p7(jd)>1; h0 = h0 & ~h1;
h2 = o.p7(jd)<=1 & o.p6(jd)>1; h0 = h0 & ~h2;
h3 = o.p6(jd)<1 & o.p7(jd)<1; h0 = h0 & ~h3;
h4 = ismembertol(o.p6(jd), 1) & ismembertol(o.p7(jd),1); h0 = h0 & ~h4;
m(jd(h1)) = o.p3(jd(h1)); % Standard β has a mode at 0
m(jd(h2)) = o.p4(jd(h2)); % Standard β has a mode at 1
m(jd(h3)) = o.p3(jd(h3)); % Standard β is bimodal, we pick the lowest mode (0)
m(jd(h4)) = o.p3(jd(h4)) + .5*(o.p4(jd(h4))-o.p3(jd(h4))); % Standard β is the uniform distribution (continuum of modes), we pick the mean as the mode
m(jd(h0)) = o.p3(jd(h0))+(o.p4(jd(h0))-o.p3(jd(h0))).*((o.p6(jd(h0))-1)./(o.p6(jd(h0))+o.p7(jd(h0))-2)); % β distribution is concave and has a unique interior mode.
end
end
end
if o.isinvgamma1
jd = intersect(o.idinvgamma1, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (inverse gamma type 1 distribution).')
end
% s → o.p6, ν → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + sqrt(.5*o.p6(jd)) .*(gamma(.5*(o.p7(jd)-1))./gamma(.5*o.p7(jd)));
case 'median'
m(jd) = o.p3(jd) + 1.0/sqrt(gaminv(.5, o.p7(jd)/2.0, 2.0/o.p6(jd)));
case 'std'
m(jd) = sqrt( o.p6(jd)./(o.p7(jd)-2)-(.5*o.p6(jd)).*(gamma(.5*(o.p7(jd)-1))./gamma(.5*o.p7(jd))).^2);
case 'mode'
m(jd) = sqrt((o.p7(jd)-1)./o.p6(jd));
end
end
end
if o.isinvgamma2
jd = intersect(o.idinvgamma2, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (inverse gamma type 2 distribution).')
end
% s → o.p6, ν → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + o.p6(jd)./(o.p7(jd)-2);
case 'median'
m(jd) = o.p3(jd) + 1.0/gaminv(.5, o.p7(jd)/2.0, 2.0/o.p6(jd));
case 'std'
m(jd) = sqrt(2./(o.p7(jd)-4)).*o.p6(jd)./(o.p7(jd)-2);
case 'mode'
m(jd) = o.p6(jd)./(o.p7(jd)+2);
end
end
end
if o.isweibull
jd = intersect(o.idweibull, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (weibull distribution).')
end
% k → o.p6 (shape parameter), λ → o.p7 (scale parameter)
% See https://en.wikipedia.org/wiki/Weibull_distribution
switch name
case 'mean'
m(jd) = o.p3(jd) + o.p7(jd).*gamma(1+1./o.p6(jd));
case 'median'
m(jd) = o.p3(jd) + o.p7(jd).*log(2).^(1./o.p6(jd));
case 'std'
m(jd) = o.p7(jd).*sqrt(gamma(1+2./o.p6(jd))-gamma(1+1./o.p6(jd)).^2);
case 'mode'
m(jd) = 0;
hd = o.p6(jd)>1;
m(jd(hd)) = o.p3(jd(hd)) + o.p7(jd(hd)).*((o.p6(jd(hd))-1)./o.p6(jd(hd))).^(1./o.p6(jd(hd)));
end
end
end
switch name
case 'mean'
o.p1 = m;
case 'median'
o.p11 = m;
case 'std'
o.p2 = m;
case 'mode'
o.p5 = m;
end
end
end
function m = mean(o, resetmoments)
% Return the prior mean.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior mean
%
% OUTPUTS
% - m [double] n×1 vector, prior mean
if nargin<2, resetmoments = false; end
if any(isnan(o.p1)), resetmoments = true; end
if resetmoments, o.p1 = NaN(size(o.p1)); o.moments('mean');
end
m = o.p1;
end
function m = variance(o, resetmoments)
% Return the prior variance.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior variance
%
% OUTPUTS
% - m [double] n×1 vector, prior variance
if nargin<2, resetmoments = false; end
if any(isnan(o.p2)), resetmoments = true; end
if resetmoments, o.p2 = NaN(size(o.p2)); o.moments('std'); end
m = o.p2.^2;
end
function m = median(o, resetmoments)
% Return the prior median.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior median
%
% OUTPUTS
% - m [double] n×1 vector, prior median
if nargin<2, resetmoments = false; end
if any(isnan(o.p11)), resetmoments = true; end
if resetmoments, o.p11 = NaN(size(o.p11)); o.moments('median'); end
m = o.p11;
end
function m = mode(o, resetmoments)
% Return the prior mode.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior mode
%
% OUTPUTS
% - m [double] n×1 vector, prior mode
if nargin<2, resetmoments = false; end
if any(isnan(o.p5)), resetmoments = true; end
if resetmoments, o.p5 = NaN(size(o.p5)); o.moments('mode'); end
m = o.p5;
end
end % methods
end % classdef --*-- Unit tests --*--
%@test:1
@ -725,397 +191,22 @@ end % classdef --*-- Unit tests --*--
%$ try
%$ % Instantiate dprior object
%$ o = dprior(bayestopt_, prior_trunc, false);
%$ % Do simulations in a loop and estimate recursively the mean and the variance.
%$ for i = 1:ndraws
%$ draw = o.draw();
%$ m1 = m0 + (draw-m0)/i;
%$ m2 = m1*m1';
%$ v0 = v0 + ((draw*draw'-m2-v0) + (i-1)*(m0*m0'-m2'))/i;
%$ m0 = m1;
%$ end
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ if t(1)
%$ t(2) = all(abs(m0-bayestopt_.p1)<3e-3);
%$ t(3) = all(all(abs(v0-diag(bayestopt_.p2.^2))<5e-3));
%$ end
%$ T = all(t);
%@eof:1
%@test:2
%$ % Fill global structures with required fields...
%$ prior_trunc = 1e-10;
%$ p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
%$ p1 = .4*ones(14,1); % Prior mean
%$ p2 = .2*ones(14,1); % Prior std.
%$ p3 = NaN(14,1);
%$ p4 = NaN(14,1);
%$ p5 = NaN(14,1);
%$ p6 = NaN(14,1);
%$ p7 = NaN(14,1);
%$
%$ for i=1:14
%$ switch p0(i)
%$ case 1
%$ % Beta distribution
%$ p3(i) = 0;
%$ p4(i) = 1;
%$ [p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
%$ case 2
%$ % Gamma distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
%$ case 3
%$ % Normal distribution
%$ p3(i) = -Inf;
%$ p4(i) = Inf;
%$ p6(i) = p1(i);
%$ p7(i) = p2(i);
%$ p5(i) = p1(i);
%$ case 4
%$ % Inverse Gamma (type I) distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
%$ case 5
%$ % Uniform distribution
%$ [p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
%$ p3(i) = p6(i);
%$ p4(i) = p7(i);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
%$ case 6
%$ % Inverse Gamma (type II) distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
%$ case 8
%$ % Weibull distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
%$ otherwise
%$ error('This density is not implemented!')
%$ end
%$ end
%$
%$ bayestopt_.pshape = p0;
%$ bayestopt_.p1 = p1;
%$ bayestopt_.p2 = p2;
%$ bayestopt_.p3 = p3;
%$ bayestopt_.p4 = p4;
%$ bayestopt_.p5 = p5;
%$ bayestopt_.p6 = p6;
%$ bayestopt_.p7 = p7;
%$
%$ ndraws = 1e5;
%$
%$ % Call the tested routine
%$ try
%$ % Instantiate dprior object.
%$ o = dprior(bayestopt_, prior_trunc, false);
%$ X = o.draws(ndraws);
%$ m = mean(X, 2);
%$ v = var(X, 0, 2);
%$ % Instantiate dprior object
%$ o = dprior();
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ if t(1)
%$ t(2) = all(abs(m-bayestopt_.p1)<3e-3);
%$ t(3) = all(all(abs(v-bayestopt_.p2.^2)<5e-3));
%$ end
%$ T = all(t);
%@eof:2
%@test:3
%$ % Fill global structures with required fields...
%$ prior_trunc = 1e-10;
%$ p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
%$ p1 = .4*ones(14,1); % Prior mean
%$ p2 = .2*ones(14,1); % Prior std.
%$ p3 = NaN(14,1);
%$ p4 = NaN(14,1);
%$ p5 = NaN(14,1);
%$ p6 = NaN(14,1);
%$ p7 = NaN(14,1);
%$
%$ for i=1:14
%$ switch p0(i)
%$ case 1
%$ % Beta distribution
%$ p3(i) = 0;
%$ p4(i) = 1;
%$ [p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
%$ case 2
%$ % Gamma distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
%$ case 3
%$ % Normal distribution
%$ p3(i) = -Inf;
%$ p4(i) = Inf;
%$ p6(i) = p1(i);
%$ p7(i) = p2(i);
%$ p5(i) = p1(i);
%$ case 4
%$ % Inverse Gamma (type I) distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
%$ case 5
%$ % Uniform distribution
%$ [p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
%$ p3(i) = p6(i);
%$ p4(i) = p7(i);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
%$ case 6
%$ % Inverse Gamma (type II) distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
%$ case 8
%$ % Weibull distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
%$ otherwise
%$ error('This density is not implemented!')
%$ end
%$ end
%$
%$ bayestopt_.pshape = p0;
%$ bayestopt_.p1 = p1;
%$ bayestopt_.p2 = p2;
%$ bayestopt_.p3 = p3;
%$ bayestopt_.p4 = p4;
%$ bayestopt_.p5 = p5;
%$ bayestopt_.p6 = p6;
%$ bayestopt_.p7 = p7;
%$
%$ % Call the tested routine
%$ try
%$ Prior = dprior(bayestopt_, prior_trunc, false);
%$
%$ % Compute density at the prior mode
%$ lpdstar = Prior.density(p5);
%$
%$ % Draw random deviates in a loop and evaluate the density.
%$ LPD = NaN(10000,1);
%$ parfor i = 1:10000
%$ x = Prior.draw();
%$ LPD(i) = Prior.density(x);
%$ end
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ if t(1)
%$ t(2) = all(LPD<=lpdstar);
%$ end
%$ T = all(t);
%@eof:3
%@test:4
%$ % Fill global structures with required fields...
%$ prior_trunc = 1e-10;
%$ p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
%$ p1 = .4*ones(14,1); % Prior mean
%$ p2 = .2*ones(14,1); % Prior std.
%$ p3 = NaN(14,1);
%$ p4 = NaN(14,1);
%$ p5 = NaN(14,1);
%$ p6 = NaN(14,1);
%$ p7 = NaN(14,1);
%$
%$ for i=1:14
%$ switch p0(i)
%$ case 1
%$ % Beta distribution
%$ p3(i) = 0;
%$ p4(i) = 1;
%$ [p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
%$ case 2
%$ % Gamma distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
%$ case 3
%$ % Normal distribution
%$ p3(i) = -Inf;
%$ p4(i) = Inf;
%$ p6(i) = p1(i);
%$ p7(i) = p2(i);
%$ p5(i) = p1(i);
%$ case 4
%$ % Inverse Gamma (type I) distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
%$ case 5
%$ % Uniform distribution
%$ [p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
%$ p3(i) = p6(i);
%$ p4(i) = p7(i);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
%$ case 6
%$ % Inverse Gamma (type II) distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
%$ case 8
%$ % Weibull distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
%$ otherwise
%$ error('This density is not implemented!')
%$ end
%$ end
%$
%$ bayestopt_.pshape = p0;
%$ bayestopt_.p1 = p1;
%$ bayestopt_.p2 = p2;
%$ bayestopt_.p3 = p3;
%$ bayestopt_.p4 = p4;
%$ bayestopt_.p5 = p5;
%$ bayestopt_.p6 = p6;
%$ bayestopt_.p7 = p7;
%$
%$ % Call the tested routine
%$ try
%$ Prior = dprior(bayestopt_, prior_trunc, false);
%$ mu = NaN(14,1);
%$ std = NaN(14,1);
%$
%$ for i=1:14
%$ % Define conditional density (it's also a marginal since priors are orthogonal)
%$ f = @(x) exp(Prior.densities(substitute(p5, i, x)));
%$ % TODO: Check the version of Octave we use (integral is available as a compatibility wrapper in latest Octave version)
%$ m = integral(f, p3(i), p4(i));
%$ density = @(x) f(x)/m; % rescaling is required since the probability mass depends on the conditioning.
%$ % Compute the conditional expectation
%$ mu(i) = integral(@(x) x.*density(x), p3(i), p4(i));
%$ std(i) = sqrt(integral(@(x) ((x-mu(i)).^2).*density(x), p3(i), p4(i)));
%$ end
%$
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ if t(1)
%$ t(2) = all(abs(mu-.4)<1e-6);
%$ t(3) = all(abs(std-.2)<1e-6);
%$ end
%$ T = all(t);
%@eof:4
%@test:5
%$ % Fill global structures with required fields...
%$ prior_trunc = 1e-10;
%$ p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
%$ p1 = .4*ones(14,1); % Prior mean
%$ p2 = .2*ones(14,1); % Prior std.
%$ p3 = NaN(14,1);
%$ p4 = NaN(14,1);
%$ p5 = NaN(14,1);
%$ p6 = NaN(14,1);
%$ p7 = NaN(14,1);
%$
%$ for i=1:14
%$ switch p0(i)
%$ case 1
%$ % Beta distribution
%$ p3(i) = 0;
%$ p4(i) = 1;
%$ [p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
%$ case 2
%$ % Gamma distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
%$ case 3
%$ % Normal distribution
%$ p3(i) = -Inf;
%$ p4(i) = Inf;
%$ p6(i) = p1(i);
%$ p7(i) = p2(i);
%$ p5(i) = p1(i);
%$ case 4
%$ % Inverse Gamma (type I) distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
%$ case 5
%$ % Uniform distribution
%$ [p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
%$ p3(i) = p6(i);
%$ p4(i) = p7(i);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
%$ case 6
%$ % Inverse Gamma (type II) distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
%$ case 8
%$ % Weibull distribution
%$ p3(i) = 0;
%$ p4(i) = Inf;
%$ [p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
%$ p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
%$ otherwise
%$ error('This density is not implemented!')
%$ end
%$ end
%$
%$ BayesInfo.pshape = p0;
%$ BayesInfo.p1 = p1;
%$ BayesInfo.p2 = p2;
%$ BayesInfo.p3 = p3;
%$ BayesInfo.p4 = p4;
%$ BayesInfo.p5 = p5;
%$ BayesInfo.p6 = p6;
%$ BayesInfo.p7 = p7;
%$
%$ % Call the tested routine
%$ try
%$ Prior = dprior(BayesInfo, prior_trunc, false);
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ if t(1)
%$ t(2) = all(Prior.mean()==.4);
%$ t(3) = all(ismembertol(Prior.mean(true),.4));
%$ t(4) = all(ismembertol(Prior.variance(),.04));
%$ t(5) = all(ismembertol(Prior.variance(true),.04));
%$ end
%$ T = all(t);
%@eof:5

197
matlab/@dprior/draw.m Normal file
View File

@ -0,0 +1,197 @@
function p = draw(o)
% Return a random draw from the prior distribution.
%
% INPUTS
% - o [dprior]
%
% OUTPUTS
% - p [double] m×1 vector, random draw from the prior distribution (m is the number of estimated parameters).
%
% REMARKS
% None.
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> d = Prior.draw()
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
p = NaN(rows(o.lb), 1);
if o.isuniform
p(o.iduniform) = rand(length(o.iduniform),1).*(o.p4(o.iduniform)-o.p3(o.iduniform)) + o.p3(o.iduniform);
oob = find( (p(o.iduniform)>o.ub(o.iduniform)) | (p(o.iduniform)<o.lb(o.iduniform)));
while ~isempty(oob)
p(o.iduniform) = rand(length(o.iduniform), 1).*(o.p4(o.iduniform)-o.p3(o.iduniform)) + o.p3(o.iduniform);
oob = find( (p(o.iduniform)>o.ub(o.iduniform)) | (p(o.iduniform)<o.lb(o.iduniform)));
end
end
if o.isgaussian
p(o.idgaussian) = randn(length(o.idgaussian), 1).*o.p7(o.idgaussian) + o.p6(o.idgaussian);
oob = find( (p(o.idgaussian)>o.ub(o.idgaussian)) | (p(o.idgaussian)<o.lb(o.idgaussian)));
while ~isempty(oob)
p(o.idgaussian(oob)) = randn(length(o.idgaussian(oob)), 1).*o.p7(o.idgaussian(oob)) + o.p6(o.idgaussian(oob));
oob = find( (p(o.idgaussian)>o.ub(o.idgaussian)) | (p(o.idgaussian)<o.lb(o.idgaussian)));
end
end
if o.isgamma
p(o.idgamma) = gamrnd(o.p6(o.idgamma), o.p7(o.idgamma))+o.p3(o.idgamma);
oob = find( (p(o.idgamma)>o.ub(o.idgamma)) | (p(o.idgamma)<o.lb(o.idgamma)));
while ~isempty(oob)
p(o.idgamma(oob)) = gamrnd(o.p6(o.idgamma(oob)), o.p7(o.idgamma(oob)))+o.p3(o.idgamma(oob));
oob = find( (p(o.idgamma)>o.ub(o.idgamma)) | (p(o.idgamma)<o.lb(o.idgamma)));
end
end
if o.isbeta
p(o.idbeta) = (o.p4(o.idbeta)-o.p3(o.idbeta)).*betarnd(o.p6(o.idbeta), o.p7(o.idbeta))+o.p3(o.idbeta);
oob = find( (p(o.idbeta)>o.ub(o.idbeta)) | (p(o.idbeta)<o.lb(o.idbeta)));
while ~isempty(oob)
p(o.idbeta(oob)) = (o.p4(o.idbeta(oob))-o.p3(o.idbeta(oob))).*betarnd(o.p6(o.idbeta(oob)), o.p7(o.idbeta(oob)))+o.p3(o.idbeta(oob));
oob = find( (p(o.idbeta)>o.ub(o.idbeta)) | (p(o.idbeta)<o.lb(o.idbeta)));
end
end
if o.isinvgamma1
p(o.idinvgamma1) = ...
sqrt(1./gamrnd(o.p7(o.idinvgamma1)/2, 2./o.p6(o.idinvgamma1)))+o.p3(o.idinvgamma1);
oob = find( (p(o.idinvgamma1)>o.ub(o.idinvgamma1)) | (p(o.idinvgamma1)<o.lb(o.idinvgamma1)));
while ~isempty(oob)
p(o.idinvgamma1(oob)) = ...
sqrt(1./gamrnd(o.p7(o.idinvgamma1(oob))/2, 2./o.p6(o.idinvgamma1(oob))))+o.p3(o.idinvgamma1(oob));
oob = find( (p(o.idinvgamma1)>o.ub(o.idinvgamma1)) | (p(o.idinvgamma1)<o.lb(o.idinvgamma1)));
end
end
if o.isinvgamma2
p(o.idinvgamma2) = ...
1./gamrnd(o.p7(o.idinvgamma2)/2, 2./o.p6(o.idinvgamma2))+o.p3(o.idinvgamma2);
oob = find( (p(o.idinvgamma2)>o.ub(o.idinvgamma2)) | (p(o.idinvgamma2)<o.lb(o.idinvgamma2)));
while ~isempty(oob)
p(o.idinvgamma2(oob)) = ...
1./gamrnd(o.p7(o.idinvgamma2(oob))/2, 2./o.p6(o.idinvgamma2(oob)))+o.p3(o.idinvgamma2(oob));
oob = find( (p(o.idinvgamma2)>o.ub(o.idinvgamma2)) | (p(o.idinvgamma2)<o.lb(o.idinvgamma2)));
end
end
if o.isweibull
p(o.idweibull) = wblrnd(o.p7(o.idweibull), o.p6(o.idweibull)) + o.p3(o.idweibull);
oob = find( (p(o.idweibull)>o.ub(o.idweibull)) | (p(o.idweibull)<o.lb(o.idweibull)));
while ~isempty(oob)
p(o.idweibull(oob)) = wblrnd(o.p7(o.idweibull(oob)), o.p6(o.idweibull(oob)))+o.p3(o.idweibull(oob));
oob = find( (p(o.idweibull)>o.ub(o.idweibull)) | (p(o.idweibull)<o.lb(o.idweibull)));
end
end
return % --*-- Unit tests --*--
%@test:1
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;
ndraws = 1e5;
m0 = BayesInfo.p1; %zeros(14,1);
v0 = diag(BayesInfo.p2.^2); %zeros(14);
% Call the tested routine
try
% Instantiate dprior object
o = dprior(BayesInfo, prior_trunc, false);
% Do simulations in a loop and estimate recursively the mean and the variance.
for i = 1:ndraws
draw = o.draw();
m1 = m0 + (draw-m0)/i;
m2 = m1*m1';
v0 = v0 + ((draw*draw'-m2-v0) + (i-1)*(m0*m0'-m2'))/i;
m0 = m1;
end
t(1) = true;
catch
t(1) = false;
end
if t(1)
t(2) = all(abs(m0-BayesInfo.p1)<3e-3);
t(3) = all(all(abs(v0-diag(BayesInfo.p2.^2))<5e-3));
end
T = all(t);
%@eof:1

133
matlab/@dprior/draws.m Normal file
View File

@ -0,0 +1,133 @@
function P = draws(o, n)
% Return n independent random draws from the prior distribution.
%
% INPUTS
% - o [dprior]
%
% OUTPUTS
% - P [double] m×n matrix, random draw from the prior distribution.
%
% REMARKS
% If the Parallel Computing Toolbox is available, the main loop is run in parallel.
%
% EXAMPLE
%
% >> Prior = dprior(bayestopt_, options_.prior_trunc);
% >> Prior.draws(1e6)
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
P = NaN(rows(o.lb), 1);
parfor i=1:n
P(:,i) = draw(o);
end
return % --*-- Unit tests --*--
%@test:1
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;
ndraws = 1e5;
% Call the tested routine
try
% Instantiate dprior object.
o = dprior(BayesInfo, prior_trunc, false);
X = o.draws(ndraws);
m = mean(X, 2);
v = var(X, 0, 2);
t(1) = true;
catch
t(1) = false;
end
if t(1)
t(2) = all(abs(m-BayesInfo.p1)<3e-3);
t(3) = all(all(abs(v-BayesInfo.p2.^2)<5e-3));
end
T = all(t);
%@eof:1

42
matlab/@dprior/mean.m Normal file
View File

@ -0,0 +1,42 @@
function m = mean(o, resetmoments)
% Return the prior mean.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior mean
%
% OUTPUTS
% - m [double] n×1 vector, prior mean
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<2
resetmoments = false;
end
if any(isnan(o.p1))
resetmoments = true;
end
if resetmoments
o.p1 = NaN(size(o.p1));
o.moments('mean');
end
m = o.p1;

42
matlab/@dprior/median.m Normal file
View File

@ -0,0 +1,42 @@
function m = median(o, resetmoments)
% Return the prior median.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior median
%
% OUTPUTS
% - m [double] n×1 vector, prior median
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<2
resetmoments = false;
end
if any(isnan(o.p11))
resetmoments = true;
end
if resetmoments
o.p11 = NaN(size(o.p11));
o.moments('median');
end
m = o.p11;

42
matlab/@dprior/mode.m Normal file
View File

@ -0,0 +1,42 @@
function m = mode(o, resetmoments)
% Return the prior mode.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior mode
%
% OUTPUTS
% - m [double] n×1 vector, prior mode
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<2
resetmoments = false;
end
if any(isnan(o.p5))
resetmoments = true;
end
if resetmoments
o.p5 = NaN(size(o.p5));
o.moments('mode');
end
m = o.p5;

291
matlab/@dprior/moments.m Normal file
View File

@ -0,0 +1,291 @@
function o = moments(o, name)
% Compute the prior moments.
%
% INPUTS
% - o [dprior]
%
% OUTPUTS
% - o [dprior]
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
switch name
case 'mean'
m = o.p1;
case 'median'
m = o.p11;
case 'std'
m = o.p2;
case 'mode'
m = o.p5;
otherwise
error('%s is not an implemented moemnt.', name)
end
id = isnan(m);
if any(id)
% For some parameters the prior mean is not defined.
% We compute the first order moment from the
% hyperparameters, if the hyperparameters are not
% available an error is thrown.
if o.isuniform
jd = intersect(o.iduniform, find(id));
if ~isempty(jd)
if any(isnan(o.p3(jd))) || any(isnan(o.p4(jd)))
error('dprior::mean: Some hyperparameters are missing (uniform distribution).')
end
switch name
case 'mean'
m(jd) = o.p3(jd) + .5*(o.p4(jd)-o.p3(jd));
case 'median'
m(jd) = o.p3(jd) + .5*(o.p4(jd)-o.p3(jd));
case 'std'
m(jd) = (o.p4(jd)-o.p3(jd))/sqrt(12);
case 'mode' % Actually we have a continuum of modes with the uniform distribution.
m(jd) = o.p3(jd) + .5*(o.p4(jd)-o.p3(jd));
end
end
end
if o.isgaussian
jd = intersect(o.idgaussian, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd)))
error('dprior::mean: Some hyperparameters are missing (gaussian distribution).')
end
switch name
case 'mean'
m(jd) = o.p6(jd);
case 'median'
m(jd) = o.p6(jd);
case 'std'
m(jd) = o.p7(jd);
case 'mode' % Actually we have a continuum of modes with the uniform distribution.
m(jd) = o.p6(jd);
end
end
end
if o.isgamma
jd = intersect(o.idgamma, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (gamma distribution).')
end
% α → o.p6, β → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + o.p6(jd).*o.p7(jd);
case 'median'
m(jd) = o.p3(jd) + gaminv(.5, o.p6(jd), o.p7(jda));
case 'std'
m(jd) = sqrt(o.p6(jd)).*o.p7(jd);
case 'mode'
m(jd) = 0;
hd = o.p6(jd)>1;
m(jd(hd)) = (o.p6(jd(hd))-1).*o.p7(jd(hd));
end
end
end
if o.isbeta
jd = intersect(o.idbeta, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd))) || any(isnan(o.p4(jd)))
error('dprior::mean: Some hyperparameters are missing (beta distribution).')
end
% α → o.p6, β → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + (o.p6(jd)./(o.p6(jd)+o.p7(jd))).*(o.p4(jd)-o.p3(jd));
case 'median'
m(jd) = o.p3(jd) + betainv(.5, o.p6(jd), o.p7(jd)).*(o.p4(jd)-o.p3(jd));
case 'std'
m(jd) = (o.p4(jd)-o.p3(jd)).*sqrt(o.p6(jd).*o.p7(jd)./((o.p6(jd)+o.p7(jd)).^2.*(o.p6(jd)+o.p7(jd)+1)));
case 'mode'
h0 = true(jd, 1);
h1 = o.p6(jd)<=1 & o.p7(jd)>1; h0 = h0 & ~h1;
h2 = o.p7(jd)<=1 & o.p6(jd)>1; h0 = h0 & ~h2;
h3 = o.p6(jd)<1 & o.p7(jd)<1; h0 = h0 & ~h3;
h4 = ismembertol(o.p6(jd), 1) & ismembertol(o.p7(jd),1); h0 = h0 & ~h4;
m(jd(h1)) = o.p3(jd(h1)); % Standard β has a mode at 0
m(jd(h2)) = o.p4(jd(h2)); % Standard β has a mode at 1
m(jd(h3)) = o.p3(jd(h3)); % Standard β is bimodal, we pick the lowest mode (0)
m(jd(h4)) = o.p3(jd(h4)) + .5*(o.p4(jd(h4))-o.p3(jd(h4))); % Standard β is the uniform distribution (continuum of modes), we pick the mean as the mode
m(jd(h0)) = o.p3(jd(h0))+(o.p4(jd(h0))-o.p3(jd(h0))).*((o.p6(jd(h0))-1)./(o.p6(jd(h0))+o.p7(jd(h0))-2)); % β distribution is concave and has a unique interior mode.
end
end
end
if o.isinvgamma1
jd = intersect(o.idinvgamma1, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (inverse gamma type 1 distribution).')
end
% s → o.p6, ν → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + sqrt(.5*o.p6(jd)) .*(gamma(.5*(o.p7(jd)-1))./gamma(.5*o.p7(jd)));
case 'median'
m(jd) = o.p3(jd) + 1.0/sqrt(gaminv(.5, o.p7(jd)/2.0, 2.0/o.p6(jd)));
case 'std'
m(jd) = sqrt( o.p6(jd)./(o.p7(jd)-2)-(.5*o.p6(jd)).*(gamma(.5*(o.p7(jd)-1))./gamma(.5*o.p7(jd))).^2);
case 'mode'
m(jd) = sqrt((o.p7(jd)-1)./o.p6(jd));
end
end
end
if o.isinvgamma2
jd = intersect(o.idinvgamma2, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (inverse gamma type 2 distribution).')
end
% s → o.p6, ν → o.p7
switch name
case 'mean'
m(jd) = o.p3(jd) + o.p6(jd)./(o.p7(jd)-2);
case 'median'
m(jd) = o.p3(jd) + 1.0/gaminv(.5, o.p7(jd)/2.0, 2.0/o.p6(jd));
case 'std'
m(jd) = sqrt(2./(o.p7(jd)-4)).*o.p6(jd)./(o.p7(jd)-2);
case 'mode'
m(jd) = o.p6(jd)./(o.p7(jd)+2);
end
end
end
if o.isweibull
jd = intersect(o.idweibull, find(id));
if ~isempty(jd)
if any(isnan(o.p6(jd))) || any(isnan(o.p7(jd))) || any(isnan(o.p3(jd)))
error('dprior::mean: Some hyperparameters are missing (weibull distribution).')
end
% k → o.p6 (shape parameter), λ → o.p7 (scale parameter)
% See https://en.wikipedia.org/wiki/Weibull_distribution
switch name
case 'mean'
m(jd) = o.p3(jd) + o.p7(jd).*gamma(1+1./o.p6(jd));
case 'median'
m(jd) = o.p3(jd) + o.p7(jd).*log(2).^(1./o.p6(jd));
case 'std'
m(jd) = o.p7(jd).*sqrt(gamma(1+2./o.p6(jd))-gamma(1+1./o.p6(jd)).^2);
case 'mode'
m(jd) = 0;
hd = o.p6(jd)>1;
m(jd(hd)) = o.p3(jd(hd)) + o.p7(jd(hd)).*((o.p6(jd(hd))-1)./o.p6(jd(hd))).^(1./o.p6(jd(hd)));
end
end
end
switch name
case 'mean'
o.p1 = m;
case 'median'
o.p11 = m;
case 'std'
o.p2 = m;
case 'mode'
o.p5 = m;
end
end
return % --*-- Unit tests --*--
%@test:5
% Fill global structures with required fields...
prior_trunc = 1e-10;
p0 = repmat([1; 2; 3; 4; 5; 6; 8], 2, 1); % Prior shape
p1 = .4*ones(14,1); % Prior mean
p2 = .2*ones(14,1); % Prior std.
p3 = NaN(14,1);
p4 = NaN(14,1);
p5 = NaN(14,1);
p6 = NaN(14,1);
p7 = NaN(14,1);
for i=1:14
switch p0(i)
case 1
% Beta distribution
p3(i) = 0;
p4(i) = 1;
[p6(i), p7(i)] = beta_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 1);
case 2
% Gamma distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = gamma_specification(p1(i), p2(i)^2, p3(i), p4(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 2);
case 3
% Normal distribution
p3(i) = -Inf;
p4(i) = Inf;
p6(i) = p1(i);
p7(i) = p2(i);
p5(i) = p1(i);
case 4
% Inverse Gamma (type I) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 1, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 4);
case 5
% Uniform distribution
[p1(i), p2(i), p6(i), p7(i)] = uniform_specification(p1(i), p2(i), p3(i), p4(i));
p3(i) = p6(i);
p4(i) = p7(i);
p5(i) = compute_prior_mode([p6(i) p7(i)], 5);
case 6
% Inverse Gamma (type II) distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = inverse_gamma_specification(p1(i), p2(i)^2, p3(i), 2, false);
p5(i) = compute_prior_mode([p6(i) p7(i)], 6);
case 8
% Weibull distribution
p3(i) = 0;
p4(i) = Inf;
[p6(i), p7(i)] = weibull_specification(p1(i), p2(i)^2, p3(i));
p5(i) = compute_prior_mode([p6(i) p7(i)], 8);
otherwise
error('This density is not implemented!')
end
end
BayesInfo.pshape = p0;
BayesInfo.p1 = p1;
BayesInfo.p2 = p2;
BayesInfo.p3 = p3;
BayesInfo.p4 = p4;
BayesInfo.p5 = p5;
BayesInfo.p6 = p6;
BayesInfo.p7 = p7;
% Call the tested routine
try
Prior = dprior(BayesInfo, prior_trunc, false);
t(1) = true;
catch
t(1) = false;
end
if t(1)
t(2) = all(Prior.mean()==.4);
t(3) = all(ismembertol(Prior.mean(true),.4));
t(4) = all(ismembertol(Prior.variance(),.04));
t(5) = all(ismembertol(Prior.variance(true),.04));
end
T = all(t);
%@eof:5

41
matlab/@dprior/subsref.m Normal file
View File

@ -0,0 +1,41 @@
function p = subsref(o, S)
% Overload subsref method.
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
switch S(1).type
case '.'
if ismember(S(1).subs, {'p1','p2','p3','p4','p5','p6','p7','lb','ub'})
p = builtin('subsref', o, S(1));
elseif ismember(S(1).subs, {'draw'})
p = feval(S(1).subs, o);
elseif ismember(S(1).subs, {'draws', 'density', 'densities', 'moments'})
p = feval(S(1).subs, o , S(2).subs{:});
elseif ismember(S(1).subs, {'mean', 'median', 'variance', 'mode'})
if (length(S)==2 && isempty(S(2).subs)) || length(S)==1
p = feval(S(1).subs, o);
else
p = feval(S(1).subs, o , S(2).subs{:});
end
else
error('dprior::subsref: unknown method (%s).', S(1).subs)
end
otherwise
error('dprior::subsref: %s indexing not implemented.', S(1).type)
end

42
matlab/@dprior/variance.m Normal file
View File

@ -0,0 +1,42 @@
function m = variance(o, resetmoments)
% Return the prior variance.
%
% INPUTS
% - o [dprior]
% - resetmoments [logical] Force the computation of the prior variance
%
% OUTPUTS
% - m [double] n×1 vector, prior variance
% Copyright © 2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if nargin<2
resetmoments = false;
end
if any(isnan(o.p2))
resetmoments = true;
end
if resetmoments
o.p2 = NaN(size(o.p2));
o.moments('std');
end
m = o.p2.^2;