Added an integration test for VAR_EXPECTATION_MODEL.

+ small cosmetic changes.
time-shift
Stéphane Adjemian(Charybdis) 2018-08-09 09:05:39 +02:00
parent f8f8ce5120
commit 349cd25b8a
6 changed files with 84 additions and 12 deletions

View File

@ -357,6 +357,7 @@ MODFILES = \
var-expectations/2/example.mod \
var-expectations/3/example.mod \
var-expectations/4/example.mod \
var-expectations/5/example.mod \
dynare-command-options/ramst.mod
PARTICLEFILES = \

View File

@ -31,7 +31,7 @@ var_model(model_name = toto, eqtags = [ 'X' 'Y' 'Z' ]);
** VAR_EXPECTATION_MODEL returns a discounted sum of expected values. If `horizon` is set equal to the range
** 0:Inf, then VAR_EXPECTATION_MODEL computes:
**
** βʰ E[y]
** βʰ E[y]
**
** where the sum is over h=0,, and the conditional expectations are computed with VAR model `var_model_name`.
*/
@ -58,7 +58,7 @@ get_companion_matrix('toto');
// Update VAR_EXPECTATION reduced form parameters
var_expectation.update('varexp');
/*
/*
** REMARK The VAR model is such that x depends on past values of x
** (x and x) and on z y, y and z do not bring any
** useful information for predicting x. Consequently the reduced
@ -67,6 +67,6 @@ var_expectation.update('varexp');
weights = M_.params(M_.var_expectation.varexp.param_indices);
if weights(2) || weights(3) || weights(5) || ~weights(1) || ~weights(4) || ~weights(6)
if weights(2) || weights(3) || weights(5) || ~weights(1) || ~weights(4) || ~weights(6)
error('Wrong reduced form parameter for VAR_EXPECTATION_MODEL')
end

View File

@ -31,7 +31,7 @@ var_model(model_name = toto, eqtags = [ 'X' 'Y' 'Z' ]);
** VAR_EXPECTATION_MODEL returns a discounted sum of expected values. If `horizon` is set equal to the range
** 0:Inf, then VAR_EXPECTATION_MODEL computes:
**
** βʰ E[y]
** βʰ E[y]
**
** where the sum is over h=0,, and the conditional expectations are computed with VAR model `var_model_name`.
*/
@ -58,7 +58,7 @@ get_companion_matrix('toto');
// Update VAR_EXPECTATION reduced form parameters
var_expectation.update('varexp');
/*
/*
** REMARK The VAR model is such that x depends on past values of x
** (x and x) and on z y, y and z do not bring any
** useful information for predicting x. Consequently the reduced
@ -67,6 +67,6 @@ var_expectation.update('varexp');
weights = M_.params(M_.var_expectation.varexp.param_indices);
if weights(2) || ~weights(3) || weights(5) || ~weights(1) || ~weights(4) || ~weights(6)
if weights(2) || ~weights(3) || weights(5) || ~weights(1) || ~weights(4) || ~weights(6)
error('Wrong reduced form parameter for VAR_EXPECTATION_MODEL')
end

View File

@ -31,7 +31,7 @@ var_model(model_name = toto, eqtags = [ 'X' 'Y' 'Z' ]);
** VAR_EXPECTATION_MODEL returns a discounted sum of expected values. If `horizon` is set equal to the range
** 0:Inf, then VAR_EXPECTATION_MODEL computes:
**
** βʰ E[y]
** βʰ E[y]
**
** where the sum is over h=0,, and the conditional expectations are computed with VAR model `var_model_name`.
*/
@ -58,7 +58,7 @@ get_companion_matrix('toto');
// Update VAR_EXPECTATION reduced form parameters
var_expectation.update('varexp');
/*
/*
** REMARK The VAR model is such that x depends on past values of x
** (x and x) and on z. Consequently the reduced
** form parameters associated to y, y have to be zero.
@ -66,7 +66,7 @@ var_expectation.update('varexp');
weights = M_.params(M_.var_expectation.varexp.param_indices);
if weights(2) || ~weights(3) || weights(5) || ~weights(1) || ~weights(4) || ~weights(6)
if weights(2) || ~weights(3) || weights(5) || ~weights(1) || ~weights(4) || ~weights(6)
error('Wrong reduced form parameter for VAR_EXPECTATION_MODEL')
end

View File

@ -31,7 +31,7 @@ var_model(model_name = toto, eqtags = [ 'X' 'Y' 'Z' ]);
** VAR_EXPECTATION_MODEL returns a discounted sum of expected values. If `horizon` is set equal to the range
** 0:Inf, then VAR_EXPECTATION_MODEL computes:
**
** βʰ E[y]
** βʰ E[y]
**
** where the sum is over h=0,, and the conditional expectations are computed with VAR model `var_model_name`.
*/
@ -58,7 +58,7 @@ get_companion_matrix('toto');
// Update VAR_EXPECTATION reduced form parameters
var_expectation.update('varexp');
/*
/*
** REMARK The VAR model is such that x depends on past values of x
** (x and x) and on z. Consequently the reduced
** form parameters associated to y, y have to be zero.
@ -66,7 +66,7 @@ var_expectation.update('varexp');
weights = M_.params(M_.var_expectation.varexp.param_indices);
if weights(2) || ~weights(3) || weights(5) || ~weights(1) || ~weights(4) || ~weights(6)
if weights(2) || ~weights(3) || weights(5) || ~weights(1) || ~weights(4) || ~weights(6)
error('Wrong reduced form parameter for VAR_EXPECTATION_MODEL')
end

View File

@ -0,0 +1,71 @@
// --+ options: stochastic,json=compute +--
var foo z x y;
varexo e_x e_y e_z;
parameters a b c d e f beta ;
a = .9;
b = -.2;
c = .3;
f = .8;
d = .5;
e = .4;
beta = 1/(1+.02);
// Define a VAR model from a subset of equations in the model block.
var_model(model_name = toto, eqtags = [ 'X' 'Y' 'Z' ]);
/* Define a VAR_EXPECTATION_MODEL
** ------------------------------
**
** model_name: the name of the VAR_EXPECTATION_MODEL (mandatory).
** var_model_name: the name of the VAR model used for the expectations (mandatory).
** variable: the name of the variable to be forecasted (mandatory).
** horizon: the horizon forecast (mandatory).
** discount: the discount factor, which can be a value or a declared parameter (default is 1.0, no discounting).
**
**
** The `horizon` parameter can be an integer in which case the (discounted) `horizon` step ahead forecast
** is computed using the VAR model `var_model_name`. Alternatively, `horizon` can be a range. In this case
** VAR_EXPECTATION_MODEL returns a discounted sum of expected values. If `horizon` is set equal to the range
** 0:Inf, then VAR_EXPECTATION_MODEL computes:
**
** βʰ E[y]
**
** where the sum is over h=0,, and the conditional expectations are computed with VAR model `var_model_name`.
*/
var_expectation_model(model_name = varexp, variable = x, var_model_name = toto, horizon = 15:50, discount = beta) ;
model;
[ name = 'X' ]
x = a*x(-1) + b*x(-2) + c*z(-2) + e_x;
[ name = 'Z' ]
z = f*z(-1) + e_z;
[ name = 'Y' ]
y = d*y(-2) + e*z(-1) + e_y;
foo = .5*foo(-1) + var_expectation(varexp);
end;
// Build the companion matrix of the VAR model (toto).
get_companion_matrix('toto');
// Update VAR_EXPECTATION reduced form parameters
var_expectation.update('varexp');
/*
** REMARK The VAR model is such that x depends on past values of x
** (x and x) and on z. Consequently the reduced
** form parameters associated to y, y have to be zero.
*/
weights = M_.params(M_.var_expectation.varexp.param_indices);
if weights(2) || ~weights(3) || weights(5) || ~weights(1) || ~weights(4) || ~weights(6)
error('Wrong reduced form parameter for VAR_EXPECTATION_MODEL')
end