Draws a vector of candidate deep parameters in the joint prior density. B&K conditions have to be tested on each draw...

git-svn-id: https://www.dynare.org/svn/dynare/dynare_v4@999 ac1d8469-bf42-47a9-8791-bf33cf982152
time-shift
adjemian 2006-10-28 13:25:20 +00:00
parent e66f3884db
commit 22e0f21220
1 changed files with 97 additions and 68 deletions

View File

@ -2,13 +2,16 @@ function pdraw = prior_draw(init,cc)
% Build one draw from the prior distribution.
%
% INPUTS
% o SampleSize [integer] Size of the sample to build
%
% o init [integer] scalar equal to 1 (first call) or 0.
% o cc [double] two columns matrix (same as in
% metropolis.m), constraints over the
% parameter space (upper and lower bounds).
%
% OUTPUTS
% None.
% o pdraw [double] draw from the joint prior density.
%
% ALGORITHM
% None.
% ...
%
% SPECIAL REQUIREMENTS
% None.
@ -16,10 +19,10 @@ function pdraw = prior_draw(init,cc)
%
% part of DYNARE, copyright S. Adjemian, M. Juillard (2006)
% Gnu Public License.
global M_ options_ estim_params_
persistent fname npar bounds pshape pmean pstd a b p3 p4
global M_ options_ estim_params_
persistent fname npar bounds pshape pmean pstd a b p3 p4 condition
if init
if init
nvx = estim_params_.nvx;
nvn = estim_params_.nvn;
ncx = estim_params_.ncx;
@ -38,95 +41,121 @@ function pdraw = prior_draw(init,cc)
a = zeros(npar,1);
b = zeros(npar,1);
if nargin == 2
bounds = cc;
bounds = cc;
else
bounds = [-Inf Inf];
bounds = [-Inf Inf];
end
for i = 1:npar
if pshape(i) == 3
b(i) = pstd(i)^2/(pmean(i)-p3(i));
a(i) = (pmean(i)-p3(i))/b(i);
elseif pshape(i) == 1
mu = (p1(i)-p3(i))/(p4(i)-p3(i));
stdd = p2(i)/(p4(i)-p3(i));
a(i) = (1-mu)*mu^2/stdd^2 - mu;
b(i) = a*(1/mu - 1);
elseif pshape(i) ==
end
pdraw = zeros(npar,1);
switch pshape(i)
case 3% Gaussian prior
b(i) = pstd(i)^2/(pmean(i)-p3(i));
a(i) = (pmean(i)-p3(i))/b(i);
case 1% Beta prior
mu = (p1(i)-p3(i))/(p4(i)-p3(i));
stdd = p2(i)/(p4(i)-p3(i));
a(i) = (1-mu)*mu^2/stdd^2 - mu;
b(i) = a*(1/mu - 1);
case 2;%Gamma prior
mu = p1(i)-p3(i);
b(i) = p2(i)^2/mu;
a(i) = mu/b;
case {5,4,6}
% Nothing to do here
%
% 4: Inverse gamma, type 1, prior
% p2(i) = nu
% p1(i) = s
% 6: Inverse gamma, type 2, prior
% p2(i) = nu
% p1(i) = s
% 5: Uniform prior
% p3(i) and p4(i) are used.
otherwise
disp('prior_draw :: Error!')
disp('Unknown prior shape.')
return
end
pdraw = zeros(npar,1);
end
condition = 1;
pdraw = zeros(npar,1);
return
end
for i = 1:npar
end
for i = 1:npar
switch pshape(i)
case 5% Uniform prior.
pdraw(i) = rand*(p4(i)-p3(i)) + p3(i);
case 3% Gaussian prior.
while condition
tmp = randn*pstd(i) + pmean(i);
if tmp >= bounds(i,1) && tmp <= bounds(i,2)
pdraw(i) = tmp;
break
end
tmp = randn*pstd(i) + pmean(i);
if tmp >= bounds(i,1) && tmp <= bounds(i,2)
pdraw(i) = tmp;
break
end
end
case 2% Gamma prior.
while condition
g = gamma_draw(a(i),b(i),p3(i));
if g >= bounds(i,1) && g <= bounds(i,2)
pdraw(i) = g;
break
end
end
g = gamma_draw(a(i),b(i),p3(i));
if g >= bounds(i,1) && g <= bounds(i,2)
pdraw(i) = g;
break
end
end
case 1% Beta distribution (TODO: generalized beta distribution)
while condition
y1 = gamma_draw(a(i),1,0);
y2 = gamma_draw(b(i),1,0);
tmp = y1/(y1+y2);
if tmp >= bounds(i,1) && tmp <= bounds(i,2)
pdraw(i) = tmp;
break
end
y1 = gamma_draw(a(i),1,0);
y2 = gamma_draw(b(i),1,0);
tmp = y1/(y1+y2);
if tmp >= bounds(i,1) && tmp <= bounds(i,2)
pdraw(i) = pmean(i)+tmp*pstd(i);
break
end
end
case 4% INV-GAMMA1 distribution
while condition
tmp = sqrt(1/gamma_draw(p2(i)/2,1/p1(i),0));
if tmp >= bounds(i,1) && tmp <= bounds(i,2)
pdraw(i) = tmp;
break
end
end
case 6% INV-GAMMA2 distribution
while condition
tmp = 1/gamma_draw(p2(i)/2,1/p1(i),0);
if tmp >= bounds(i,1) && tmp <= bounds(i,2)
pdraw(i) = tmp;
break
end
end
otherwise
disp('prior_draw:: Error!')
disp('Unknown prior distribution.')
pdraw(i) = NaN;
% Nothing to do here.
end
end
end
function gamma_draw(a,b,c)
% Bauwens, Lubrano & Richard (page 316)
if a >30
if a >30
z = randn;
g = b*(z+sqrt(4*a-1))^2/4 + c;
else
x = -1;
while x<0
u1 = rand;
y = tan(pi*u1);
x = y*sqrt(2*a-1)+a-1;
end
while condition
u2 = rand;
if log(u2) <= log(1+y^2)+(a-1)*log(x/(a-1))-y*sqrt(2*a-1);
break
end
else
condi = 1
while condi
x = -1;
while x<0
u1 = rand;
y = tan(pi*u1);
x = y*sqrt(2*a-1)+a-1;
end
u2 = rand;
if log(u2) <= log(1+y^2)+(a-1)*log(x/(a-1))-y*sqrt(2*a-1);
break
end
end
g = x*b+c;
end
end