dynare/matlab/kernel_density_estimate.m

72 lines
2.7 KiB
Matlab
Raw Normal View History

function [abscissa,f] = kernel_density_estimate(data,number_of_grid_points,bandwidth,kernel_function)
% function [abscissa,f] = kernel_density_estimate(data,number_of_grid_points,bandwidth,kernel_function)
% Estimates a continuous density.
%
% INPUTS
% data: data
% number_of_grid_points: number of grid points
% bandwidth: scalar equals to 0,-1 or -2. For a value different from 0,-1 or -2 the
% function will return optimal_bandwidth = bandwidth.
% kernel_function: 'gaussian','uniform','triangle','epanechnikov',
% 'quartic','triweight','cosinus'.
%
% OUTPUTS
% abscissa: value on the abscissa axis
% f: density
%
% SPECIAL REQUIREMENTS
% A kernel density estimator is used (see Silverman [1986], "Density estimation for statistics and data analysis")
% The code is adapted from Anders Holtsberg's matlab toolbox (stixbox).
%
% part of DYNARE, copyright Dynare Team (2004-2008)
% Gnu Public License.
if size(data,2) > 1 & size(data,1) == 1
data = transpose(data);
elseif size(data,2)>1 & size(data,1)>1
error('kernel_density_estimate :: data must be a one dimensional array.');
end
test = log(number_of_grid_points)/log(2);
if (abs(test-round(test)) > 10^(-12))
error('kernel_density_estimate :: The number of grid points must be a power of 2.');
end
n = size(data,1);
%% KERNEL SPECIFICATION...
if strcmpi(kernel_function,'gaussian')
k = inline('inv(sqrt(2*pi))*exp(-0.5*x.^2)');
elseif strcmpi(kernel_function,'uniform')
k = inline('0.5*(abs(x) <= 1)');
elseif strcmpi(kernel_function,'triangle')
k = inline('(1-abs(x)).*(abs(x) <= 1)');
elseif strcmpi(kernel_function,'epanechnikov')
k = inline('0.75*(1-x.^2).*(abs(x) <= 1)');
elseif strcmpi(kernel_function,'quartic')
k = inline('0.9375*((1-x.^2).^2).*(abs(x) <= 1)');
elseif strcmpi(kernel_function,'triweight')
k = inline('1.09375*((1-x.^2).^3).*(abs(x) <= 1)');
elseif strcmpi(kernel_function,'cosinus')
k = inline('(pi/4)*cos((pi/2)*x).*(abs(x) <= 1)');
end
%% COMPUTE DENSITY ESTIMATE... Gaussian kernel should be used (FFT).
a = min(data) - (max(data)-min(data))/3;
b = max(data) + (max(data)-min(data))/3;
abscissa = linspace(a,b,number_of_grid_points)';
d = abscissa(2)-abscissa(1);
xi = zeros(number_of_grid_points,1);
xa = (data-a)/(b-a)*number_of_grid_points;
for i = 1:n;
indx = floor(xa(i));
temp = xa(i)-indx;
xi(indx+[1 2]) = xi(indx+[1 2]) + [1-temp,temp]';
end;
xk = [-number_of_grid_points:number_of_grid_points-1]'*d;
kk = k(xk/bandwidth);
kk = kk / (sum(kk)*d*n);
f = ifft(fft(fftshift(kk)).*fft([xi ;zeros(size(xi))]));
f = real(f(1:number_of_grid_points));