dynare/matlab/solve_stochastic_perfect_fo...

118 lines
4.2 KiB
Matlab
Raw Normal View History

function [flag,endo_simul,err] = solve_stochastic_perfect_foresight_model(endo_simul,exo_simul,pfm,nnodes)
flag = 0;
err = 0;
stop = 0;
number_of_shocks = size(exo_simul,2);
[nodes,weights] = gauss_hermite_weights_and_nodes(nnodes);
if number_of_shocks>1
for i=1:number_of_shocks
rr(i) = {nodes};
ww(i) = {weights};
end
nodes = cartesian_product_of_sets(rr{:});
weights = prod(cartesian_product_of_sets(ww{:}),2);
end
innovations = zeros(pfm.periods+2,number_of_shocks);
model_dynamic = pfm.dynamic_model;
dimension = (2+pfm.periods)*pfm.ny; % First n are given, dimension-n is the number of unknowns.
Y = repmat(endo_simul(:),dimension/pfm.ny,1);
if pfm.verbose
disp ([' -----------------------------------------------------']);
disp (['MODEL SIMULATION :']);
fprintf('\n');
end
z = Y(find(pfm.lead_lag_incidence'));
[d1,jacobian] = model_dynamic(z,exo_simul,pfm.params,pfm.steady_state,2);
A = sparse([],[],[],dimension,dimension,dimension/pfm.ny*nnz(jacobian));
res = zeros(dimension,1);
h1 = clock;
for iter = 1:pfm.maxit_
h2 = clock;
i_rows = 1:pfm.ny;
i_cols = find(pfm.lead_lag_incidence');
2012-02-11 00:01:22 +01:00
i_cols_p = i_cols(1:pfm.nyp);
i_cols_s = i_cols(pfm.nyp+1:pfm.nyp+pfm.ny);
i_cols_f = bsxfun(@plus,i_cols(pfm.nyp+pfm.ny+1:pfm.nyp+pfm.ny+pfm.nyf),pfm.ny*(0:nnodes-1));
i_cols_A = i_cols;
for it = 2:(pfm.periods+1)
if it == 2
y = Y(i_cols);
expectations = zeros(pfm.nyf,1);
for n=1:nnodes
2012-02-11 00:01:22 +01:00
expectations = expectations+weights(n)*Y(i_cols_f(:,n));
end
y(it*pfm.ny+pfm.iyf) = expectations;
[d1,jacobian] = model_dynamic(y,exo_simul,pfm.params,pfm.steady_state,it);
A(i_rows,pfm.i_cols_A1) = jacobian(:,pfm.i_cols_1);
2012-02-11 00:01:22 +01:00
i_rows = i_rows + pfm.ny;
i_cols_p = bsxfun(@plus,i_cols_p,repmat(pfm.ny,1,nnodes));
i_cols_s = bsxfun(@plus,i_cols_s,pfm.ny*(1:nnodes));
i_cols_f = bsxfun(@plus,i_cols_f,pfm.ny*nnodes);
elseif it == pfm.periods+1
A(i_rows,i_cols_A(pfm.i_cols_T)) = jacobian(:,pfm.i_cols_T);
else
for n=1:nnodes
innovations(3,:) = nodes(n,:);
2012-02-11 00:01:22 +01:00
i_cols = [i_cols_p(:,n); i_cols_s(:,n); i_cols_f(:,n)];
[d1,jacobian] = model_dynamic(Y(i_cols),innovations,pfm.params,pfm.steady_state,it);
A(i_rows,i_cols_A) = jacobian(:,pfm.i_cols_j);
end
2012-02-11 00:01:22 +01:00
i_cols_s = i_cols_s + pfm.ny*nnodes;
i_cols_f = i_cols_f + pfm.ny*nnodes;
if it == 3
i_cols_p = bsxfun(@plus,i_cols_p,pfm.ny*(1:nnodes));
else
i_cols_p = i_cols_p + pfm.ny*nnodes;
end
end
res(i_rows) = d1;
2012-02-11 00:01:22 +01:00
%i_rows = i_rows + pfm.ny;
%i_cols = i_cols + pfm.ny;
if it > 2
i_cols_A = i_cols_A + pfm.ny;
end
end
err = max(abs(res));
if err < pfm.tolerance
stop = 1 ;
if pfm.verbose
fprintf('\n') ;
disp([' Total time of simulation :' num2str(etime(clock,h1))]) ;
fprintf('\n') ;
disp([' Convergency obtained.']) ;
fprintf('\n') ;
end
flag = 0;% Convergency obtained.
endo_simul = reshape(Y,pfm.ny,pfm.periods+2);
break
end
dy = -A\res;
Y(pfm.i_upd) = Y(pfm.i_upd) + dy;
end
if ~stop
if pfm.verbose
fprintf('\n') ;
disp([' Total time of simulation :' num2str(etime(clock,h1))]) ;
fprintf('\n') ;
disp(['WARNING : maximum number of iterations is reached (modify options_.maxit_).']) ;
fprintf('\n') ;
end
flag = 1;% more iterations are needed.
endo_simul = 1;
end
if pfm.verbose
disp (['-----------------------------------------------------']) ;
end