dynare/matlab/gauss_hermite_weights_and_n...

59 lines
2.0 KiB
Matlab
Raw Normal View History

function [nodes,weights] = gauss_hermite_weights_and_nodes(n)
% Computes the weights and nodes for an Hermite Gaussian quadrature rule.
%@info:
%! @deftypefn {Function File} {@var{nodes}, @var{weights} =} gauss_hermite_weights_and_nodes (@var{n})
%! @anchor{gauss_hermite_weights_and_nodes}
%! @sp 1
%! Computes the weights and nodes for an Hermite Gaussian quadrature rule. designed to approximate integrals
%! on the infinite interval (-\infty,\infty) of an unweighted smooth function.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item n
%! Positive integer scalar, number of nodes (order of approximation).
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item nodes
%! n*1 vector of doubles, the nodes (roots of an order n Hermite polynomial)
%! @item weights
%! n*1 vector of doubles, the associated weights.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 2
%! @strong{This function calls:}
%! @sp 2
%! @end deftypefn
%@eod:
% Copyright (C) 2011 Dynare Team
% stephane DOT adjemian AT univ DASH lemans DOT fr
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
b = sqrt([1:n-1]/2);
JacobiMatrix = diag(b,1)+diag(b,-1);
[JacobiEigenVectors,JacobiEigenValues] = eig(JacobiMatrix);
[nodes,idx] = sort(diag(JacobiEigenValues));
JacobiEigenVector = JacobiEigenVectors(1,:);
JacobiEigenVector = transpose(JacobiEigenVector(idx));
weights = JacobiEigenVector.^2;
nodes = sqrt(2)*nodes;