dynare/matlab/identification_checks.m

199 lines
6.9 KiB
Matlab
Raw Normal View History

function [McoH, McoJ, McoGP, PcoH, PcoJ, PcoGP, condH, condJ, condGP, eH, eJ, eGP, ind01, ind02, indnoH, indnoJ, ixnoH, ixnoJ] = identification_checks(H, JJ, gp)
% function [McoH, McoJ, McoGP, PcoH, PcoJ, PcoGP, condH, condJ, condGP, eH,
% eJ, eGP, ind01, ind02, indnoH, indnoJ, ixnoH, ixnoJ] = identification_checks(H, JJ, gp)
% checks for identification
%
% INPUTS
% o H [matrix] [(entries in st.sp. model solutio) x nparams]
% derivatives of model solution w.r.t. parameters and shocks
% o JJ [matrix] [moments x nparams]
% derivatives of moments w.r.t. parameters and shocks
% o gp [matrix] [jacobian_entries x nparams]
% derivatives of jacobian (i.e. LRE model) w.r.t. parameters and shocks
%
% OUTPUTS
% o McoH [array] multicollinearity coefficients in the model solution
% o McoJ [array] multicollinearity coefficients in the moments
% o McoGP [array] multicollinearity coefficients in the LRE model
% o PcoH [matrix] pairwise correlations in the model solution
% o PcoJ [matrix] pairwise correlations in the moments
% o PcoGP [matrix] pairwise correlations in the LRE model
% o condH condition number of H
% o condJ condition number of JJ
% o condGP condition number of gp
% o eH eigevectors of H
% o eJ eigevectors of JJ
% o eGP eigevectors of gp
% o ind01 [array] binary indicator for non-zero columns of H
% o ind02 [array] binary indicator for non-zero columns of JJ
% o indnoH [matrix] index of non-identified params in H
% o indnoJ [matrix] index of non-identified params in JJ
% o ixnoH number of rows in ind01
% o ixnoJ number of rows in ind02
%
% SPECIAL REQUIREMENTS
% None
2011-02-04 17:27:33 +01:00
% Copyright (C) 2008-2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% My suggestion is to have the following steps for identification check in
% dynare:
% 1. check rank of H, JJ, gp at theta
npar = size(H,2);
npar0 = size(gp,2); % shocks do not enter jacobian
indnoH = zeros(1,npar);
indnoJ = zeros(1,npar);
indnoLRE = zeros(1,npar0);
% H matrix
ind1 = find(vnorm(H)>=eps); % take non-zero columns
H1 = H(:,ind1);
[eu,e2,e1] = svd( H1, 0 );
eH = zeros(npar,npar);
% eH(ind1,:) = e1;
eH(ind1,length(find(vnorm(H)<eps))+1:end) = e1; % non-zero eigenvectors
eH(find(vnorm(H)<eps),1:length(find(vnorm(H)<eps)))=eye(length(find(vnorm(H)<eps)));
condH = cond(H1);
rankH = rank(H);
rankHH = rank(H'*H);
ind2 = find(vnorm(JJ)>=eps); % take non-zero columns
JJ1 = JJ(:,ind2);
[eu,ee2,ee1] = svd( JJ1, 0 );
eJ = zeros(npar,npar);
eJ(ind2,length(find(vnorm(JJ)<eps))+1:end) = ee1; % non-zero eigenvectors
eJ(find(vnorm(JJ)<eps),1:length(find(vnorm(JJ)<eps)))=eye(length(find(vnorm(JJ)<eps)));
condJ = cond(JJ1);
rankJJ = rank(JJ'*JJ);
rankJ = rank(JJ);
ind3 = find(vnorm(gp)>=eps); % take non-zero columns
gp1 = gp(:,ind3);
covgp = gp1'*gp1;
sdgp = sqrt(diag(covgp));
sdgp = sdgp*sdgp';
[eu,ex2,ex1] = svd(gp1, 0 );
eGP = zeros(npar0,npar0);
eGP(ind3,length(find(vnorm(gp)<eps))+1:end) = ex1; % non-zero eigenvectors
eGP(find(vnorm(gp)<eps),1:length(find(vnorm(gp)<eps)))=eye(length(find(vnorm(gp)<eps)));
% condJ = cond(JJ1'*JJ1);
condGP = cond(gp1);
ind01 = zeros(npar,1);
ind02 = zeros(npar,1);
ind01(ind1) = 1;
ind02(ind2) = 1;
% find near linear dependence problems:
McoH = NaN(npar,1);
McoJ = NaN(npar,1);
McoGP = NaN(npar0,1);
for ii = 1:size(H1,2);
McoH(ind1(ii),:) = [cosn([H1(:,ii),H1(:,find([1:1:size(H1,2)]~=ii))])];
end
for ii = 1:size(JJ1,2);
McoJ(ind2(ii),:) = [cosn([JJ1(:,ii),JJ1(:,find([1:1:size(JJ1,2)]~=ii))])];
end
for ii = 1:size(gp1,2);
2011-02-04 17:17:48 +01:00
McoGP(ind3(ii),:) = [cosn([gp1(:,ii),gp1(:,find([1:1:size(gp1,2)]~=ii))])];
end
ixno = 0;
if rankH<npar || rankHH<npar || min(1-McoH)<1.e-10
% - find out which parameters are involved,
% using the vnorm and the svd of H computed before;
% disp('Some parameters are NOT identified in the model: H rank deficient')
% disp(' ')
if length(ind1)<npar,
% parameters with zero column in H
ixno = ixno + 1;
indnoH(ixno,:) = (~ismember([1:npar],ind1));
end
e0 = [rankHH+1:length(ind1)];
for j=1:length(e0),
% linearely dependent parameters in H
ixno = ixno + 1;
indnoH(ixno,ind1) = (abs(e1(:,e0(j))) > 1.e-3 )';
end
else % rank(H)==length(theta), go to 2
% 2. check rank of J
% disp('All parameters are identified at theta in the model (rank of H)')
% disp(' ')
end
ixnoH=ixno;
ixno = 0;
if rankJ<npar || rankJJ<npar || min(1-McoJ)<1.e-10
% - find out which parameters are involved
% disp('Some parameters are NOT identified by the moments included in J')
% disp(' ')
if length(ind2)<npar,
% parameters with zero column in JJ
ixno = ixno + 1;
indnoJ(ixno,:) = (~ismember([1:npar],ind2));
end
ee0 = [rankJJ+1:length(ind2)];
for j=1:length(ee0),
% linearely dependent parameters in JJ
ixno = ixno + 1;
indnoJ(ixno,ind2) = (abs(ee1(:,ee0(j))) > 1.e-3)';
end
else %rank(J)==length(theta) =>
2011-02-04 17:17:48 +01:00
% disp('All parameters are identified at theta by the moments included in J')
end
ixnoJ=ixno;
% here there is no exact linear dependence, but there are several
% near-dependencies, mostly due to strong pairwise colliniearities, which can
% be checked using
PcoH = NaN(npar,npar);
PcoJ = NaN(npar,npar);
PcoGP = NaN(npar0,npar0);
for ii = 1:size(H1,2);
2010-03-08 16:17:00 +01:00
PcoH(ind1(ii),ind1(ii)) = 1;
for jj = ii+1:size(H1,2);
PcoH(ind1(ii),ind1(jj)) = [cosn([H1(:,ii),H1(:,jj)])];
2010-03-08 16:17:00 +01:00
PcoH(ind1(jj),ind1(ii)) = PcoH(ind1(ii),ind1(jj));
end
end
for ii = 1:size(JJ1,2);
2010-03-08 16:17:00 +01:00
PcoJ(ind2(ii),ind2(ii)) = 1;
for jj = ii+1:size(JJ1,2);
PcoJ(ind2(ii),ind2(jj)) = [cosn([JJ1(:,ii),JJ1(:,jj)])];
2010-03-08 16:17:00 +01:00
PcoJ(ind2(jj),ind2(ii)) = PcoJ(ind2(ii),ind2(jj));
end
end
for ii = 1:size(gp1,2);
2010-03-08 16:17:00 +01:00
PcoGP(ind3(ii),ind3(ii)) = 1;
for jj = ii+1:size(gp1,2);
PcoGP(ind3(ii),ind3(jj)) = [cosn([gp1(:,ii),gp1(:,jj)])];
PcoGP(ind3(jj),ind3(ii)) = PcoGP(ind3(ii),ind3(jj));
end
end