dynare/mex/sources/k_order_perturbation/dynamic_m.cc

207 lines
7.0 KiB
C++
Raw Normal View History

/*
* Copyright © 2010-2022 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#include <algorithm>
2019-04-02 16:33:15 +02:00
#include <cassert>
#include "dynare_exception.hh"
#include "dynamic_m.hh"
DynamicModelMFile::DynamicModelMFile(const std::string &modName, int ntt_arg) :
DynamicModelAC(ntt_arg),
DynamicMFilename{modName + ".dynamic"}
{
}
/* NB: This is a duplicate of DynamicModelMatlabCaller::cmplxToReal() in
perfect_foresight_problem MEX */
mxArray *
DynamicModelMFile::cmplxToReal(mxArray *cmplx_mx)
{
mxArray *real_mx = mxCreateDoubleMatrix(mxGetM(cmplx_mx), mxGetN(cmplx_mx), mxREAL);
#if MX_HAS_INTERLEAVED_COMPLEX
mxComplexDouble *cmplx = mxGetComplexDoubles(cmplx_mx);
#else
double *cmplx_real = mxGetPr(cmplx_mx);
double *cmplx_imag = mxGetPi(cmplx_mx);
#endif
double *real = mxGetPr(real_mx);
for (size_t i = 0; i < mxGetNumberOfElements(cmplx_mx); i++)
#if MX_HAS_INTERLEAVED_COMPLEX
if (cmplx[i].imag == 0.0)
real[i] = cmplx[i].real;
#else
if (cmplx_imag[i] == 0.0)
real[i] = cmplx_real[i];
#endif
else
real[i] = std::numeric_limits<double>::quiet_NaN();
mxDestroyArray(cmplx_mx);
return real_mx;
}
2019-04-02 16:33:15 +02:00
void
DynamicModelMFile::unpackSparseMatrixAndCopyIntoTwoDMatData(mxArray *sparseMat, TwoDMatrix &tdm)
2019-04-02 16:33:15 +02:00
{
int totalCols = mxGetN(sparseMat);
mwIndex *rowIdxVector = mxGetIr(sparseMat);
mwIndex *colIdxVector = mxGetJc(sparseMat);
assert(tdm.ncols() == 3);
/* Under MATLAB, the following check always holds at equality; under Octave,
there may be an inequality, because Octave diminishes nzmax if one gives
zeros in the values vector when calling sparse(). */
assert(tdm.nrows() >= mxGetNzmax(sparseMat));
2019-04-02 16:33:15 +02:00
int rind = 0;
int output_row = 0;
for (int i = 0; i < totalCols; i++)
for (int j = 0; j < static_cast<int>((colIdxVector[i+1]-colIdxVector[i])); j++, rind++)
{
tdm.get(output_row, 0) = rowIdxVector[rind] + 1;
tdm.get(output_row, 1) = i + 1;
if (!mxIsComplex(sparseMat))
tdm.get(output_row, 2) = mxGetPr(sparseMat)[rind];
else
{
double real, imag;
#if MX_HAS_INTERLEAVED_COMPLEX
mxComplexDouble cmplx = mxGetComplexDoubles(sparseMat)[rind];
real = cmplx.real;
imag = cmplx.imag;
#else
real = mxGetPr(sparseMat)[rind];
imag = mxGetPi(sparseMat)[rind];
#endif
tdm.get(output_row, 2) = imag == 0.0 ? real : std::numeric_limits<double>::quiet_NaN();
}
2019-04-02 16:33:15 +02:00
output_row++;
}
/* If there are less elements than expected (that might happen if some
2019-04-02 16:33:15 +02:00
derivative is symbolically not zero but numerically zero at the evaluation
point), then fill in the matrix with empty entries, that will be
recognized as such by KordpDynare::populateDerivativesContainer() */
while (output_row < tdm.nrows())
2019-04-02 16:33:15 +02:00
{
tdm.get(output_row, 0) = 0;
tdm.get(output_row, 1) = 0;
tdm.get(output_row, 2) = 0;
2019-04-02 16:33:15 +02:00
output_row++;
}
}
void
DynamicModelMFile::eval(const Vector &y, const Vector &x, const Vector &modParams, const Vector &ySteady,
Vector &residual, std::vector<TwoDMatrix> &md) noexcept(false)
{
mxArray *T_m = mxCreateDoubleMatrix(ntt, 1, mxREAL);
mxArray *y_m = mxCreateDoubleMatrix(y.length(), 1, mxREAL);
std::copy_n(y.base(), y.length(), mxGetPr(y_m));
mxArray *x_m = mxCreateDoubleMatrix(1, x.length(), mxREAL);
std::copy_n(x.base(), x.length(), mxGetPr(x_m));
mxArray *params_m = mxCreateDoubleMatrix(modParams.length(), 1, mxREAL);
std::copy_n(modParams.base(), modParams.length(), mxGetPr(params_m));
mxArray *steady_state_m = mxCreateDoubleMatrix(ySteady.length(), 1, mxREAL);
std::copy_n(ySteady.base(), ySteady.length(), mxGetPr(steady_state_m));
mxArray *it_m = mxCreateDoubleScalar(1.0);
mxArray *T_flag_m = mxCreateLogicalScalar(false);
{
// Compute temporary terms (for all orders)
std::string funcname = DynamicMFilename + "_g" + std::to_string(md.size()) + "_tt";
mxArray *plhs[1], *prhs[] = { T_m, y_m, x_m, params_m, steady_state_m, it_m };
int retVal = mexCallMATLAB(1, plhs, 6, prhs, funcname.c_str());
if (retVal != 0)
throw DynareException(__FILE__, __LINE__, "Trouble calling " + funcname);
mxDestroyArray(T_m);
T_m = plhs[0];
}
{
// Compute residuals
std::string funcname = DynamicMFilename + "_resid";
mxArray *plhs[1], *prhs[] = { T_m, y_m, x_m, params_m, steady_state_m, it_m, T_flag_m };
int retVal = mexCallMATLAB(1, plhs, 7, prhs, funcname.c_str());
if (retVal != 0)
throw DynareException(__FILE__, __LINE__, "Trouble calling " + funcname);
if (!mxIsDouble(plhs[0]) || mxIsSparse(plhs[0]))
throw DynareException(__FILE__, __LINE__, "Residual should be a dense array of double floats");
if (mxIsComplex(plhs[0]))
plhs[0] = cmplxToReal(plhs[0]);
residual = Vector{plhs[0]};
mxDestroyArray(plhs[0]);
}
for (size_t i = 1; i <= md.size(); i++)
{
// Compute model derivatives
std::string funcname = DynamicMFilename + "_g" + std::to_string(i);
mxArray *plhs[1], *prhs[] = { T_m, y_m, x_m, params_m, steady_state_m, it_m, T_flag_m };
int retVal = mexCallMATLAB(1, plhs, 7, prhs, funcname.c_str());
if (retVal != 0)
throw DynareException(__FILE__, __LINE__, "Trouble calling " + funcname);
if (!mxIsDouble(plhs[0]))
throw DynareException(__FILE__, __LINE__, "Derivatives matrix at order " + std::to_string(i) + "should be an array of double floats");
if (i == 1)
{
if (mxIsSparse(plhs[0]))
throw DynareException(__FILE__, __LINE__, "Derivatives matrix at order " + std::to_string(i) + " should be dense");
assert(static_cast<int>(mxGetM(plhs[0])) == md[i-1].nrows());
assert(static_cast<int>(mxGetN(plhs[0])) == md[i-1].ncols());
std::copy_n(mxGetPr(plhs[0]), mxGetM(plhs[0])*mxGetN(plhs[0]), md[i-1].base());
}
else
{
if (!mxIsSparse(plhs[0]))
throw DynareException(__FILE__, __LINE__, "Derivatives matrix at order " + std::to_string(i) + " should be sparse");
unpackSparseMatrixAndCopyIntoTwoDMatData(plhs[0], md[i-1]);
}
mxDestroyArray(plhs[0]);
}
mxDestroyArray(T_m);
mxDestroyArray(y_m);
mxDestroyArray(x_m);
mxDestroyArray(params_m);
mxDestroyArray(steady_state_m);
mxDestroyArray(it_m);
mxDestroyArray(T_flag_m);
}