dynare/dynare++/kord/first_order.cc

292 lines
11 KiB
C++
Raw Normal View History

/*
* Copyright © 2004 Ondra Kamenik
* Copyright © 2019 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#include "kord_exception.hh"
#include "first_order.hh"
#include <dynlapack.h>
double FirstOrder::qz_criterium_global;
std::mutex FirstOrder::mut;
2019-06-05 18:17:43 +02:00
/* This is a function which selects the eigenvalues pair used by LAPACKs
dgges. Here we want to select the pairs for which α<β (up to the QZ
criterium). */
lapack_int
FirstOrder::order_eigs(const double *alphar, const double *alphai, const double *beta)
{
return (*alphar **alphar + *alphai **alphai < *beta **beta * qz_criterium_global * qz_criterium_global);
}
/* Here we solve the linear approximation. The result are the matrices
2019-06-05 18:17:43 +02:00
g_y* and g. The method solves the first derivatives of g so
that the following equation would be true:
2019-06-05 18:17:43 +02:00
𝔼[F(y*,u,u,σ)] = 𝔼[f(g**(g*(y*,u,σ), u, σ), g(y*,u,σ), y*,u)]=0
where f is a given system of equations.
It is known that g_y* is given by F_y*=0, g is given by F=0, and g_σ is
zero. The only input to the method are the derivatives fd of the system f,
and partitioning of the vector y (from object). */
void
FirstOrder::solve(const TwoDMatrix &fd)
{
JournalRecordPair pa(journal);
pa << "Recovering first order derivatives " << endrec;
2019-06-05 18:17:43 +02:00
// Solve derivatives gy
/* The derivatives g_y* are retrieved from the equation F_y*=0. The
calculation proceeds as follows:
1. For each variable appearing at both t-1 and t+1 we add a dummy
variable, so that the predetermined variables and forward looking would
be disjoint. This is, the matrix of the first derivatives of the
system written as:
[ f_y** f_ys f_yp f_yb f_yf f_y* ]
where f_ys, f_yp, f_yb, and f_yf are derivatives w.r.t. static,
predetermined, both, forward looking at time t, is rewritten as:
f_y** f_ys f_yp f_yb 0 f_yf f_y*
0 0 0 I I 0 0
where the second line has number of rows equal to the number of both
variables.
2. Next, provided that forward looking and predetermined are disjoint, the
equation F_y*=0 is written as:
[f_y**][g**_y*][g*_y*] + [f_ys][gˢ_y*] + [f_y*][g*_y*] + [f_y**][g**_y*] + [f_y*] = 0
This is rewritten as
I I
[f_y* 0 f_y**] gˢ_y*[g*_y*] + [f_y* f_ys f_y**] gˢ_y* = 0
g**_y* g**_y*
Now, in the above equation, there are the auxiliary variables standing
for copies of both variables at time t+1. This equation is then
rewritten as:
I I
f_yp f_yb 0 f_y** gˢ_y*[g*_y*] + f_y* f_ys 0 f_yf gˢ_y* = 0
0 I 0 0 g**_y* 0 0 I 0 g**_y*
The two matrices are denoted as D and E, so the equation takes the form:
I I
D gˢ_y*[g*_y*] = E gˢ_y*
g**_y* g**_y*
3. Next we solve the equation by Generalized Schur decomposition:
T TZ ZI S SZ ZI
0 TZ ZX[g*_y*] = 0 SZ ZX
We reorder the eigenvalue pair so that S/T with modulus less than
one would be in the left-upper part.
4. The Blanchard-Kahn stability argument implies that the pairs with
modulus less that one will be in and only in S/T. The exploding
paths will be then eliminated when
Z ZI Y
Z ZX = 0
From this we have, Y=Z¹, and X=ZY, or equivalently X=ZZ.
From the equation, we get [g*_y*]=Y¹T¹SY, which is
ZT¹SZ¹.
5. We then copy the derivatives to storage gy. Note that the derivatives
of both variables are in X and in [g*_y*], so we check whether the two
submatrices are the same. The difference is only numerical error.
*/
// Setup submatrices of f
/* Here we setup submatrices of the derivatives fd. */
int off = 0;
ConstTwoDMatrix fyplus(fd, off, ypart.nyss());
off += ypart.nyss();
ConstTwoDMatrix fyszero(fd, off, ypart.nstat);
off += ypart.nstat;
ConstTwoDMatrix fypzero(fd, off, ypart.npred);
off += ypart.npred;
ConstTwoDMatrix fybzero(fd, off, ypart.nboth);
off += ypart.nboth;
ConstTwoDMatrix fyfzero(fd, off, ypart.nforw);
off += ypart.nforw;
ConstTwoDMatrix fymins(fd, off, ypart.nys());
off += ypart.nys();
ConstTwoDMatrix fuzero(fd, off, nu);
off += nu;
2019-06-05 18:17:43 +02:00
// Form matrix D
lapack_int n = ypart.ny()+ypart.nboth;
TwoDMatrix matD(n, n);
matD.zeros();
matD.place(fypzero, 0, 0);
matD.place(fybzero, 0, ypart.npred);
matD.place(fyplus, 0, ypart.nys()+ypart.nstat);
for (int i = 0; i < ypart.nboth; i++)
matD.get(ypart.ny()+i, ypart.npred+i) = 1.0;
lapack_int ldb = matD.getLD();
2019-06-05 18:17:43 +02:00
// Form matrix E
TwoDMatrix matE(n, n);
matE.zeros();
matE.place(fymins, 0, 0);
matE.place(fyszero, 0, ypart.nys());
matE.place(fyfzero, 0, ypart.nys()+ypart.nstat+ypart.nboth);
for (int i = 0; i < ypart.nboth; i++)
matE.get(ypart.ny()+i, ypart.nys()+ypart.nstat+i) = -1.0;
matE.mult(-1.0);
lapack_int lda = matE.getLD();
2019-06-05 18:17:43 +02:00
// Solve generalized Schur decomposition
TwoDMatrix vsl(n, n);
TwoDMatrix vsr(n, n);
lapack_int ldvsl = vsl.getLD(), ldvsr = vsr.getLD();
lapack_int lwork = 100*n+16;
Vector work(lwork);
auto bwork = std::make_unique<lapack_int[]>(n);
lapack_int info;
lapack_int sdim2 = sdim;
{
std::lock_guard<std::mutex> lk{mut};
qz_criterium_global = qz_criterium;
dgges("N", "V", "S", order_eigs, &n, matE.getData().base(), &lda,
2019-12-20 14:36:20 +01:00
matD.getData().base(), &ldb, &sdim2, alphar.base(), alphai.base(),
beta.base(), vsl.getData().base(), &ldvsl, vsr.getData().base(), &ldvsr,
work.base(), &lwork, bwork.get(), &info);
}
if (info)
throw KordException(__FILE__, __LINE__,
"DGGES returns an error in FirstOrder::solve");
sdim = sdim2;
bk_cond = (sdim == ypart.nys());
2019-06-05 18:17:43 +02:00
// Setup submatrices of Z
ConstGeneralMatrix z11(vsr, 0, 0, ypart.nys(), ypart.nys());
ConstGeneralMatrix z12(vsr, 0, ypart.nys(), ypart.nys(), n-ypart.nys());
ConstGeneralMatrix z21(vsr, ypart.nys(), 0, n-ypart.nys(), ypart.nys());
ConstGeneralMatrix z22(vsr, ypart.nys(), ypart.nys(), n-ypart.nys(), n-ypart.nys());
2019-06-05 18:17:43 +02:00
// Calculate derivatives of static and forward
/* Here we calculate X=Z₂₂⁻ᵀZ₁₂ᵀ, where X is sfder in the code. */
GeneralMatrix sfder(transpose(z12));
z22.multInvLeftTrans(sfder);
sfder.mult(-1);
2019-06-05 18:17:43 +02:00
// Calculate derivatives of predetermined
/* Here we calculate g*_y* = Z₁₁T₁₁⁻¹S₁₁Z₁₁⁻¹ = Z₁₁T₁₁⁻¹(Z₁₁⁻ᵀS₁₁ᵀ)ᵀ. */
ConstGeneralMatrix s11(matE, 0, 0, ypart.nys(), ypart.nys());
ConstGeneralMatrix t11(matD, 0, 0, ypart.nys(), ypart.nys());
GeneralMatrix dumm(transpose(s11));
z11.multInvLeftTrans(dumm);
GeneralMatrix preder(transpose(dumm));
t11.multInvLeft(preder);
preder.multLeft(z11);
2019-06-05 18:17:43 +02:00
// Copy derivatives to gy
gy.place(preder, ypart.nstat, 0);
GeneralMatrix sder(sfder, 0, 0, ypart.nstat, ypart.nys());
gy.place(sder, 0, 0);
GeneralMatrix fder(sfder, ypart.nstat+ypart.nboth, 0, ypart.nforw, ypart.nys());
gy.place(fder, ypart.nstat+ypart.nys(), 0);
2019-06-05 18:17:43 +02:00
// Check difference for derivatives of both
GeneralMatrix bder(const_cast<const GeneralMatrix &>(sfder), ypart.nstat, 0, ypart.nboth, ypart.nys());
GeneralMatrix bder2(preder, ypart.npred, 0, ypart.nboth, ypart.nys());
bder.add(-1, bder2);
b_error = bder.getData().getMax();
2019-06-05 18:17:43 +02:00
// Solve derivatives gu
/* The equation Fᵤ=0 can be written as
[f_y**][g**_y*][g*] + [f_y][g] + [f] = 0
and rewritten as
2019-06-05 18:17:43 +02:00
[f_y + [0 f_y**·g**_y* 0] ] g = f
This is exactly what is done here. The matrix [f_y + [0 f_y**·g**_y* 0] ]
is matA in the code. */
GeneralMatrix matA(ypart.ny(), ypart.ny());
matA.zeros();
ConstGeneralMatrix gss(gy, ypart.nstat+ypart.npred, 0, ypart.nyss(), ypart.nys());
matA.place(fyplus * gss, 0, ypart.nstat);
ConstGeneralMatrix fyzero(fd, 0, ypart.nyss(), ypart.ny(), ypart.ny());
matA.add(1.0, fyzero);
gu.zeros();
gu.add(-1.0, fuzero);
ConstGeneralMatrix(matA).multInvLeft(gu);
journalEigs();
KORD_RAISE_IF_X(!bk_cond,
"The model is not Blanchard-Kahn stable",
KORD_MD_NOT_STABLE);
if (!gy.isFinite() || !gu.isFinite())
throw KordException(__FILE__, __LINE__,
2019-06-05 18:17:43 +02:00
"NaN or Inf asserted in first order derivatives in FirstOrder::solve()");
}
void
FirstOrder::journalEigs()
{
if (bk_cond)
{
JournalRecord jr(journal);
jr << "Blanchard-Kahn conditition satisfied, model stable" << endrec;
}
else
{
JournalRecord jr(journal);
jr << "Blanchard-Kahn condition not satisfied, model not stable: sdim=" << sdim
2019-06-05 18:17:43 +02:00
<< " npred=" << ypart.nys() << endrec;
}
if (!bk_cond)
for (int i = 0; i < alphar.length(); i++)
{
if (i == sdim || i == ypart.nys())
{
JournalRecord jr(journal);
2019-06-05 18:17:43 +02:00
jr << u8"──────────────────────────────────────────────────── ";
if (i == sdim)
jr << "sdim";
else
jr << "npred";
jr << endrec;
}
JournalRecord jr(journal);
double mod = std::sqrt(alphar[i]*alphar[i]+alphai[i]*alphai[i]);
mod = mod/std::round(100000*std::abs(beta[i]))*100000;
jr << i << "\t(" << alphar[i] << "," << alphai[i] << ") / " << beta[i]
<< " \t" << mod << endrec;
}
}