dynare/dynare++/integ/cc/quasi_mcarlo.cc

215 lines
5.4 KiB
C++
Raw Normal View History

/*
* Copyright © 2005 Ondra Kamenik
* Copyright © 2019 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#include "quasi_mcarlo.hh"
#include <cmath>
#include <iostream>
#include <iomanip>
2019-04-01 13:17:14 +02:00
#include <array>
2019-06-19 17:33:01 +02:00
/* Here in the constructor, we have to calculate a maximum length of coeff
array for a given base and given maximum maxn. After allocation, we
calculate the coefficients. */
RadicalInverse::RadicalInverse(int n, int b, int mxn)
: num(n), base(b), maxn(mxn),
coeff(static_cast<int>(floor(log(static_cast<double>(maxn))/log(static_cast<double>(b)))+2), 0)
{
int nr = num;
j = -1;
do
{
j++;
coeff[j] = nr % base;
nr = nr / base;
}
while (nr > 0);
}
2019-06-19 17:33:01 +02:00
/* This evaluates the radical inverse. If there was no permutation, we have to
calculate:
c c c
+ + +
b b² bʲ¹
which is evaluated as:
c 1 c 1 c 1 c
· + · + · +
b b b b b b b
Now with permutation π, we have:
π(c) 1 π(c) 1 π(c) 1 π(c)
· + · + · +
b b b b b b b
*/
double
RadicalInverse::eval(const PermutationScheme &p) const
{
double res = 0;
for (int i = j; i >= 0; i--)
{
int cper = p.permute(i, base, coeff[i]);
res = (cper + res)/base;
}
return res;
}
/* We just add 1 to the lowest coefficient and check for overflow with respect
to the base. */
void
RadicalInverse::increase()
{
2019-06-19 17:33:01 +02:00
// TODO: raise if num+1 > maxn
num++;
int i = 0;
coeff[i]++;
while (coeff[i] == base)
{
coeff[i] = 0;
coeff[++i]++;
}
if (i > j)
j = i;
}
/* Debug print. */
void
RadicalInverse::print() const
{
std::cout << "n=" << num << " b=" << base << " c=";
coeff.print();
}
2019-06-19 17:33:01 +02:00
/* Here we have the first 170 primes. This means that we are not able to
integrate dimensions greater than 170. */
2019-12-20 14:36:20 +01:00
std::array<int, 170> HaltonSequence::primes =
{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, 503, 509, 521, 523, 541,
547, 557, 563, 569, 571, 577, 587, 593, 599, 601,
607, 613, 617, 619, 631, 641, 643, 647, 653, 659,
661, 673, 677, 683, 691, 701, 709, 719, 727, 733,
739, 743, 751, 757, 761, 769, 773, 787, 797, 809,
811, 821, 823, 827, 829, 839, 853, 857, 859, 863,
877, 881, 883, 887, 907, 911, 919, 929, 937, 941,
947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013
};
2019-06-19 17:33:01 +02:00
/* This takes first dim primes and constructs dim radical inverses and
calls eval(). */
HaltonSequence::HaltonSequence(int n, int mxn, int dim, const PermutationScheme &p)
: num(n), maxn(mxn), per(p), pt(dim)
{
2019-06-19 17:33:01 +02:00
// TODO: raise if dim > num_primes
// TODO: raise if n > mxn
for (int i = 0; i < dim; i++)
ri.emplace_back(num, primes[i], maxn);
eval();
}
2019-06-19 17:33:01 +02:00
/* This calls RadicalInverse::increase() for all radical inverses and calls
eval(). */
void
HaltonSequence::increase()
{
2019-12-20 14:36:20 +01:00
for (auto &i : ri)
i.increase();
num++;
if (num <= maxn)
eval();
}
2019-06-19 17:33:01 +02:00
/* This sets point pt to radical inverse evaluations in each dimension. */
void
HaltonSequence::eval()
{
for (unsigned int i = 0; i < ri.size(); i++)
pt[i] = ri[i].eval(per);
}
/* Debug print. */
void
HaltonSequence::print() const
{
auto ff = std::cout.flags();
2019-12-20 14:36:20 +01:00
for (const auto &i : ri)
i.print();
std::cout << "point=[ "
<< std::fixed << std::setprecision(6);
for (unsigned int i = 0; i < ri.size(); i++)
std::cout << std::setw(7) << pt[i] << ' ';
std::cout << ']' << std::endl;
std::cout.flags(ff);
}
qmcpit::qmcpit(const QMCSpecification &s, int n)
: spec(s), halton{n, s.level(), s.dimen(), s.getPerScheme()},
sig{s.dimen()}
{
}
bool
qmcpit::operator==(const qmcpit &qpit) const
{
return &spec == &qpit.spec && halton.getNum() == qpit.halton.getNum();
}
qmcpit &
qmcpit::operator++()
{
halton.increase();
return *this;
}
double
qmcpit::weight() const
{
return 1.0/spec.level();
}
int
WarnockPerScheme::permute(int i, int base, int c) const
{
return (c+i) % base;
}
int
ReversePerScheme::permute(int i, int base, int c) const
{
return (base-c) % base;
}