dynare/tests/k_order_perturbation/burnside_k_order.mod

173 lines
5.3 KiB
Modula-2
Raw Normal View History

/*
Check the policy functions obtained by perturbation at a high approximation
order, using the Burnside (1998, JEDC) model (for which the analytical form of
the policy function is known).
As shown by Burnside, the policy function for y is:
y = β exp[a+b(xx)]
where:
θ² 2ρ 1ρ²
a = iθx + σ² i (1ρ) + ρ²
2(1ρ)² 1ρ 1ρ²
θρ
b = (1ρ)
1ρ
x is the steady state of x
σ is the standard deviation of e.
With some algebra, it can be shown that the derivative of y at the deterministic
steady state is equal to:
² y (2p)!
= β b ρ c exp(iθx)
x e ²s ¹ p!
where:
s is the stochastic scale factor
θ² 2ρ 1ρ²
c = i (1ρ) + ρ²
2(1ρ)² 1ρ 1ρ²
2019-04-29 15:46:47 +02:00
Note that derivatives with respect to an odd order for s (i.e. ²¹s) are always
equal to zero.
The policy function as returned in the oo_.dr.g_* matrices has the following properties:
its elements are pre-multiplied by the Taylor coefficients;
derivatives w.r.t. the stochastic scale factor have already been summed up;
symmetric elements are folded (and they are not pre-multiplied by the number of repetitions).
As a consequence, the element g corresponding to the m-th derivative w.r.t.
to x and the n-th derivative w.r.t. to e is given by:
1 c
g = β b ρ exp(iθx)
(m+n)! 02pk-m-n ¹ p!
where k is the order of approximation.
*/
@#define k =7
var y x;
varexo e;
parameters beta theta rho xbar;
xbar = 0.0179;
rho = -0.139;
theta = -1.5;
theta = -10;
beta = 0.95;
model;
y = beta*exp(theta*x(+1))*(1+y(+1));
x = (1-rho)*xbar + rho*x(-1)+e;
end;
shocks;
var e; stderr 0.0348;
end;
initval;
x = xbar;
y = beta*exp(theta*xbar)/(1-beta*exp(theta*xbar));
end;
steady;
stoch_simul(order=@{k},k_order_solver,irf=0,drop=0,periods=100);
% Verify that the policy function coefficients are correct
sigma2=M_.Sigma_e;
i = 1:800;
c = theta^2*sigma2/(2*(1-rho)^2)*(i-2*rho*(1-rho.^i)/(1-rho)+rho^2*(1-rho.^(2*i))/(1-rho^2));
b = theta*rho*(1-rho.^i)/(1-rho);
for ord = 0:@{k}
g = oo_.dr.(['g_' num2str(ord)])(2,:); % Retrieve computed policy function for variable y
for m = 0:ord % m is the derivation order with respect to x(-1)
v = 0;
for p = 0:floor((@{k}-ord)/2) % 2p is the derivation order with respect to s
if ord+2*p > 0 % Skip the deterministic steady state constant
v = v + sum(beta.^i.*exp(theta*xbar*i).*b.^ord.*rho^m.*c.^p)/factorial(ord)/factorial(p);
end
end
if abs(v-g(ord+1-m)) > 1e-14
error(['Error in matrix oo_.dr.g_' num2str(ord)])
end
end
end
% Verify that the simulated time series is correct
xss = oo_.steady_state(2);
xlag = xss;
for T = 1:size(oo_.endo_simul,2)
e_ = oo_.exo_simul(T);
y_ = oo_.steady_state(1);
for ord = 0:@{k}
g = oo_.dr.(['g_' num2str(ord)])(2,:); % Retrieve computed policy function for variable y
for m = 0:ord
y_ = y_ + g(ord+1-m)*(xlag-xss)^m*e_^(ord-m)*nchoosek(ord,m);
end
end
if abs(y_-oo_.endo_simul(1,T)) > 1e-14
error(['Error in dynare_simul_ DLL'])
end
xlag = oo_.endo_simul(2,T);
end
% Verify that the simulated time series is correct with the Fortran routine k_order_simul
order = options_.order;
nstat = M_.nstatic;
npred = M_.npred;
nboth = M_.nboth;
nfwrd = M_.nfwrd;
nexog = M_.exo_nbr;
ystart = oo_.dr.ys(oo_.dr.order_var,1);
ex_ = oo_.exo_simul';
ysteady = oo_.dr.ys(oo_.dr.order_var);
dr = oo_.dr;
vcov = M_.Sigma_e;
seed = options_.DynareRandomStreams;
%do 1 call to get k_order_simul into memory (dynare_simul_ was already called within stoch_simul)
fortran_endo_simul = k_order_simul(order, nstat, npred, nboth, nfwrd, nexog, ystart, ex_, ysteady, dr);
tElapsed=NaN(2,1000);
for ii=1:1000
tStart1 = tic; fortran_endo_simul = k_order_simul(order, nstat, npred, nboth, nfwrd, nexog, ystart, ex_, ysteady, dr); tElapsed(1,ii) = toc(tStart1);
tStart2 = tic; dynare_endo_simul = dynare_simul_(order, nstat, npred, nboth, nfwrd, nexog, ystart,ex_,vcov,seed, ysteady, dr); tElapsed(2,ii) = toc(tStart2);
end
if max(max(abs(oo_.endo_simul-fortran_endo_simul(oo_.dr.order_var,:)))) > 1e-10
error('Error in k_order_simul: inaccurate simulation');
end;
if max(max(abs(dynare_endo_simul-fortran_endo_simul))) > 1e-10
error('Error in k_order_simul: inaccurate simulation');
end;
tElapsed1=mean(tElapsed(1,:))
tElapsed2=mean(tElapsed(2,:))
if tElapsed1<tElapsed2
skipline()
dprintf('k_order_simul is %5.2f times faster than dynare_simul_', tElapsed2/tElapsed1)
skipline()
else
skipline()
dprintf('k_order_simul is %5.2f times slower than dynare_simul_', tElapsed1/tElapsed2)
skipline()
end