dynare/matlab/steady.m

417 lines
15 KiB
Matlab
Raw Normal View History

function steady()
% function steady()
% computes and prints the steady state calculations
2017-05-16 15:10:20 +02:00
%
% INPUTS
% none
2017-05-16 15:10:20 +02:00
%
% OUTPUTS
% none
%
% SPECIAL REQUIREMENTS
% none
% Copyright © 2001-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
global M_ oo_ options_
test_for_deep_parameters_calibration(M_);
% Keep of a copy of M_.Sigma_e
Sigma_e = M_.Sigma_e;
% Set M_.Sigma_e=0 (we compute the *deterministic* steady state)
M_.Sigma_e(:,:) = 0;
if ~ismember(options_.homotopy_mode, [0 1 2 3])
error('STEADY: invalid value for homotopy_mode option')
end
if isfield(options_, 'homotopy_values') && options_.homotopy_mode == 0
warning('STEADY: a homotopy_setup block is present but homotopy will not be performed because homotopy_mode option is equal to 0')
end
if options_.homotopy_mode ~= 0
if ~isfield(options_, 'homotopy_values')
error('STEADY: a homotopy_setup block must be present when the homotopy_mode option is specified')
end
if options_.steadystate_flag
error('STEADY: Can''t use homotopy when providing a steady state external file');
end
hv = options_.homotopy_values;
if any(hv(:,1)~=1 & hv(:,1)~=2 & hv(:,1)~=4)
% Already checked by the preprocessor, but lets stay on the safe side
error('HOMOTOPY_SETUP: incorrect variable types specified')
end
2017-05-16 15:10:20 +02:00
% If the “from_initval_to_endval” option was passed to the “homotopy_setup” block, add the relevant homotopy information
if options_.homotopy_from_initval_to_endval
if isempty(oo_.initial_exo_steady_state)
error('HOMOTOPY_SETUP: the from_initval_to_endval option cannot be used without an endval block')
end
for i = 1:M_.exo_nbr
if ~any(hv(:,1)==1 & hv(:,2)==i) % Do not overwrite information manually specified by the user
hv = vertcat(hv, [ 1 i oo_.initial_exo_steady_state(i) oo_.exo_steady_state(i)]);
end
end
end
homotopy_func = str2func(['homotopy' num2str(options_.homotopy_mode)]);
[M_,oo_,errorcode] = homotopy_func(hv, options_.homotopy_steps, M_, options_, oo_);
if errorcode
if errorcode == 2
disp('WARNING: homotopy failed at the first iteration (for the starting values)')
else % errorcode == 1: print last successful point
ip = find(hv(:,1) == 4); % Parameters
ix = find(hv(:,1) == 1); % Exogenous
ixd = find(hv(:,1) == 2); % Exogenous deterministic
skipline()
disp('WARNING: homotopy step was not completed')
disp('The last values for which a solution was found are:')
for i=1:length(ip)
fprintf('%12s %12.6f\n',char(M_.param_names(hv(ip(i),2))), ...
M_.params(hv(ip(i),2)))
end
for i=1:length(ix)
fprintf('%12s %12.6f\n',char(M_.exo_names(hv(ix(i),2))), ...
oo_.exo_steady_state(hv(ix(i),2)))
end
for i=1:length(ixd)
fprintf('%12s %12.6f\n',char(M_.exo_det_names(hv(ixd(i),2))), ...
oo_.exo_det_steady_state(hv(ixd(i),2)))
end
end
if options_.homotopy_force_continue
disp('Option homotopy_continue is set, so I continue ...')
else
error('Homotopy step failed')
end
end
end
2017-05-16 15:10:20 +02:00
[oo_.steady_state,M_.params,info] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck);
if info(1) == 0
if ~options_.noprint
disp_steady_state(M_,oo_,options_);
end
else
if ~options_.noprint
if ~isempty(oo_.steady_state)
display_static_residuals(M_, options_, oo_);
else
skipline()
disp('Residuals of the static equations cannot be computed because the steady state routine returned an empty vector.')
skipline()
end
end
if options_.debug
fprintf('\nsteady: The steady state computation failed. It terminated with the following values:\n')
if ~isreal(oo_.steady_state)
format_string=sprintf('%%-%us= %%g%%+gi\n',size(strvcat(M_.endo_names),2)+1);
else
format_string=sprintf('%%-%us= %%14.6f\n',size(strvcat(M_.endo_names),2)+1);
end
for i=1:M_.orig_endo_nbr
if ~isreal(oo_.steady_state)
fprintf(format_string, M_.endo_names{i}, real(oo_.steady_state(i)),imag(oo_.steady_state(i)));
else
fprintf(format_string, M_.endo_names{i}, oo_.steady_state(i));
end
2017-05-16 15:10:20 +02:00
end
end
2013-06-12 10:54:33 +02:00
print_info(info,options_.noprint, options_);
end
M_.Sigma_e = Sigma_e;
function [M_,oo_,errorcode] = homotopy1(values, step_nbr, M_, options_, oo_)
% Implements homotopy (mode 1) for steady-state computation.
% The multi-dimensional vector going from the set of initial values
% to the set of final values is divided in as many sub-vectors as
% there are steps, and the problem is solved as many times.
%
% INPUTS
% values: a matrix with 4 columns, representing the content of
% homotopy_setup block, with one variable per line.
% Column 1 is variable type (1 for exogenous, 2 for
% exogenous deterministic, 4 for parameters)
% Column 2 is symbol integer identifier.
% Column 3 is initial value, and column 4 is final value.
% Column 3 can contain NaNs, in which case previous
% initialization of variable will be used as initial value.
% step_nbr: number of steps for homotopy
% M_ struct of model parameters
% options_ struct of options
% oo_ struct of outputs
%
% OUTPUTS
% M_ struct of model parameters
% oo_ struct of outputs
% errorcode 0 in case of success
% 1 if some homotopy steps were successful but it was not
% possible to go up to 100%; in that case, parameters in
% M_.params and exogenous in oo_ are left to the last
% successful point
% 2 if it wasnt possible to compute a solution for the
% starting values
nv = size(values, 1);
ip = find(values(:,1) == 4); % Parameters
ix = find(values(:,1) == 1); % Exogenous
ixd = find(values(:,1) == 2); % Exogenous deterministic
% Construct vector of starting values, using previously initialized values
% when initial value has not been given in homotopy_setup block
oldvalues = values(:,3);
ipn = find(values(:,1) == 4 & isnan(oldvalues));
oldvalues(ipn) = M_.params(values(ipn, 2));
ixn = find(values(:,1) == 1 & isnan(oldvalues));
oldvalues(ixn) = oo_.exo_steady_state(values(ixn, 2));
ixdn = find(values(:,1) == 2 & isnan(oldvalues));
oldvalues(ixdn) = oo_.exo_det_steady_state(values(ixdn, 2));
points = zeros(nv, step_nbr+1);
for i = 1:nv
if (oldvalues(i) ~= values(i, 4))
points(i,:) = oldvalues(i):(values(i,4)-oldvalues(i))/step_nbr:values(i,4);
else
points(i,:) = values(i,4);
end
end
for i=1:step_nbr+1
disp([ 'HOMOTOPY mode 1: computing step ' int2str(i-1) '/' int2str(step_nbr) '...' ])
M_.params(values(ip,2)) = points(ip,i);
oo_.exo_steady_state(values(ix,2)) = points(ix,i);
oo_.exo_det_steady_state(values(ixd,2)) = points(ixd,i);
[oo_.steady_state,M_.params,info] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck);
if info(1)
if i == 1
errorcode = 2;
else
M_.params = last_successful_params;
oo_.exo_steady_state = last_successful_exo;
oo_.exo_det_steady_state = last_successful_exo_det;
errorcode = 1;
end
return
end
last_successful_params = M_.params;
last_successful_exo = oo_.exo_steady_state;
last_successful_exo_det = oo_.exo_det_steady_state;
end
errorcode = 0;
function [M_, oo_, errorcode] = homotopy2(values, step_nbr, M_, options_, oo_)
% Implements homotopy (mode 2) for steady-state computation.
% Only one parameter/exogenous is changed at a time.
% Computation jumps to next variable only when current variable has been
% brought to its final value.
% Variables are processed in the order in which they appear in "values".
% The problem is solved var_nbr*step_nbr times.
%
2023-10-06 22:02:02 +02:00
% See homotopy1 for the description of inputs and outputs.
nv = size(values, 1);
oldvalues = values(:,3);
% Initialize all variables with initial value, or the reverse...
for i = 1:nv
switch values(i,1)
case 1
if isnan(oldvalues(i))
oldvalues(i) = oo_.exo_steady_state(values(i,2));
else
oo_.exo_steady_state(values(i,2)) = oldvalues(i);
end
case 2
if isnan(oldvalues(i))
oldvalues(i) = oo_.exo_det_steady_state(values(i,2));
else
oo_.exo_det_steady_state(values(i,2)) = oldvalues(i);
end
case 4
if isnan(oldvalues(i))
oldvalues(i) = M_.params(values(i,2));
else
M_.params(values(i,2)) = oldvalues(i);
end
otherwise
error('HOMOTOPY mode 2: incorrect variable types specified')
end
end
if any(oldvalues == values(:,4))
error('HOMOTOPY mode 2: initial and final values should be different')
end
% Actually do the homotopy
for i = 1:nv
switch values(i,1)
case 1
varname = M_.exo_names{values(i,2)};
case 2
varname = M_.exo_det_names{values(i,2)};
case 4
varname = M_.param_names{values(i,2)};
end
for v = oldvalues(i):(values(i,4)-oldvalues(i))/step_nbr:values(i,4)
switch values(i,1)
case 1
oo_.exo_steady_state(values(i,2)) = v;
case 2
oo_.exo_det_steady_state(values(i,2)) = v;
case 4
M_.params(values(i,2)) = v;
end
disp([ 'HOMOTOPY mode 2: lauching solver with ' varname ' = ' num2str(v) ' ...'])
[oo_.steady_state, M_.params, info] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck);
if info(1)
if i == 1 && v == oldvalues(1)
errorcode = 2;
else
M_.params = last_successful_params;
oo_.exo_steady_state = last_successful_exo;
oo_.exo_det_steady_state = last_successful_exo_det;
errorcode = 1;
end
return
end
last_successful_params = M_.params;
last_successful_exo = oo_.exo_steady_state;
last_successful_exo_det = oo_.exo_det_steady_state;
end
end
errorcode = 0;
function [M_,oo_,errorcode] = homotopy3(values, step_nbr, M_, options_, oo_)
% Implements homotopy (mode 3) for steady-state computation.
% Tries first the most extreme values. If it fails to compute the steady
% state, the interval between initial and desired values is divided by two
% for each parameter. Every time that it is impossible to find a steady
% state, the previous interval is divided by two. When one succeed to find
% a steady state, the previous interval is multiplied by two.
%
2023-10-06 22:02:02 +02:00
% See homotopy1 for the description of inputs and outputs.
info = [];
tol = 1e-8;
nv = size(values,1);
ip = find(values(:,1) == 4); % Parameters
ix = find(values(:,1) == 1); % Exogenous
ixd = find(values(:,1) == 2); % Exogenous deterministic
% Construct vector of starting values, using previously initialized values
% when initial value has not been given in homotopy_setup block
oldvalues = values(:,3);
ipn = find(values(:,1) == 4 & isnan(oldvalues));
oldvalues(ipn) = M_.params(values(ipn, 2));
ixn = find(values(:,1) == 1 & isnan(oldvalues));
oldvalues(ixn) = oo_.exo_steady_state(values(ixn, 2));
ixdn = find(values(:,1) == 2 & isnan(oldvalues));
oldvalues(ixdn) = oo_.exo_det_steady_state(values(ixdn, 2));
targetvalues = values(:,4);
iplus = find(targetvalues > oldvalues);
iminus = find(targetvalues < oldvalues);
curvalues = oldvalues;
inc = (targetvalues-oldvalues)/2;
kplus = [];
kminus = [];
last_successful_values = [];
disp('HOMOTOPY mode 3: launching solver at initial point...')
iter = 1;
while iter <= step_nbr
M_.params(values(ip,2)) = curvalues(ip);
oo_.exo_steady_state(values(ix,2)) = curvalues(ix);
oo_.exo_det_steady_state(values(ixd,2)) = curvalues(ixd);
old_ss = oo_.steady_state;
[steady_state,params,info] = evaluate_steady_state(old_ss,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck);
if info(1) == 0
oo_.steady_state = steady_state;
M_.params = params;
if length([kplus; kminus]) == nv
errorcode = 0;
return
end
if iter == 1
disp('HOMOTOPY mode 3: successful step, now jumping to final point...')
else
disp('HOMOTOPY mode 3: successful step, now multiplying increment by 2...')
end
last_successful_values = curvalues;
last_successful_params = params;
last_successful_exo_steady_state = oo_.exo_steady_state;
last_successful_exo_det_steady_state = oo_.exo_det_steady_state;
inc = 2*inc;
elseif iter == 1
errorcode = 2;
return
else
disp('HOMOTOPY mode 3: failed step, now dividing increment by 2...')
inc = inc/2;
oo_.steady_state = old_ss;
end
curvalues = last_successful_values + inc;
kplus = find(curvalues(iplus) >= targetvalues(iplus));
curvalues(iplus(kplus)) = targetvalues(iplus(kplus));
kminus = find(curvalues(iminus) <= targetvalues(iminus));
curvalues(iminus(kminus)) = targetvalues(iminus(kminus));
if max(abs(inc)) < tol
disp('HOMOTOPY mode 3: failed, increment has become too small')
M_.params = last_successful_params;
oo_.exo_steady_state = last_successful_exo_steady_state;
oo_.exo_det_steady_state = last_successful_exo_det_steady_state;
errorcode = 1;
return
end
iter = iter + 1;
end
disp('HOMOTOPY mode 3: failed, maximum iterations reached; you may want to increase the homotopy_steps option')
M_.params = last_successful_params;
oo_.exo_steady_state = last_successful_exo_steady_state;
oo_.exo_det_steady_state = last_successful_exo_det_steady_state;
errorcode = 1;