dynare/dynare++/kord/faa_di_bruno.cc

148 lines
5.5 KiB
C++
Raw Normal View History

// Copyright 2005, Ondra Kamenik
#include "faa_di_bruno.hh"
#include "fine_container.hh"
#include <cmath>
// |FaaDiBruno::calculate| folded sparse code
/* We take an opportunity to refine the stack container to avoid
allocation of more memory than available. */
void
FaaDiBruno::calculate(const StackContainer<FGSTensor> &cont,
const TensorContainer<FSSparseTensor> &f,
FGSTensor &out)
{
out.zeros();
for (int l = 1; l <= out.dimen(); l++)
{
int max, mem_mb, p_size_mb;
std::tie(max, mem_mb, p_size_mb) = estimRefinement(out.getDims(), out.nrows(), l);
FoldedFineContainer fine_cont(cont, max);
fine_cont.multAndAdd(l, f, out);
JournalRecord recc(journal);
recc << "dim=" << l << " avmem=" << mem_mb << " tmpmem=" << p_size_mb << " max=" << max
2019-04-23 18:57:52 +02:00
<< " stacks=" << cont.numStacks() << u8"" << fine_cont.numStacks() << endrec;
}
}
// |FaaDiBruno::calculate| folded dense code
/* Here we just simply evaluate |multAndAdd| for the dense
container. There is no opportunity for tuning. */
void
FaaDiBruno::calculate(const FoldedStackContainer &cont, const FGSContainer &g,
FGSTensor &out)
{
out.zeros();
for (int l = 1; l <= out.dimen(); l++)
{
long int mem = SystemResources::availableMemory();
cont.multAndAdd(l, g, out);
JournalRecord rec(journal);
int mem_mb = mem/1024/1024;
rec << "dim=" << l << " avmem=" << mem_mb << endrec;
}
}
// |FaaDiBruno::calculate| unfolded sparse code
/* This is the same as |@<|FaaDiBruno::calculate| folded sparse
code@>|. The only difference is that we construct unfolded fine
container. */
void
FaaDiBruno::calculate(const StackContainer<UGSTensor> &cont,
const TensorContainer<FSSparseTensor> &f,
UGSTensor &out)
{
out.zeros();
for (int l = 1; l <= out.dimen(); l++)
{
int max, mem_mb, p_size_mb;
std::tie(max, mem_mb, p_size_mb) = estimRefinement(out.getDims(), out.nrows(), l);
UnfoldedFineContainer fine_cont(cont, max);
fine_cont.multAndAdd(l, f, out);
JournalRecord recc(journal);
recc << "dim=" << l << " avmem=" << mem_mb << " tmpmem=" << p_size_mb << " max=" << max
2019-04-23 18:57:52 +02:00
<< " stacks=" << cont.numStacks() << u8"" << fine_cont.numStacks() << endrec;
}
}
// |FaaDiBruno::calculate| unfolded dense code
/* Again, no tuning opportunity here. */
void
FaaDiBruno::calculate(const UnfoldedStackContainer &cont, const UGSContainer &g,
UGSTensor &out)
{
out.zeros();
for (int l = 1; l <= out.dimen(); l++)
{
long int mem = SystemResources::availableMemory();
cont.multAndAdd(l, g, out);
JournalRecord rec(journal);
int mem_mb = mem/1024/1024;
rec << "dim=" << l << " avmem=" << mem_mb << endrec;
}
}
/* This function returns a number of maximum rows used for refinement of
the stacked container. We want to set the maximum so that the expected
memory consumption for the number of paralel threads would be less
than available memory. On the other hand we do not want to be too
pesimistic since a very fine refinement can be very slow.
Besides memory needed for a dense unfolded slice of a tensor from
|f|, each thread needs |magic_mult*per_size| bytes of memory. In the
worst case, |magic_mult| will be equal to 2, this means memory
|per_size| for target temporary (permuted symmetry) tensor plus one
copy for intermediate result. However, this shows to be too
pesimistic, so we set |magic_mult| to 1.5. The memory for permuted
symmetry temporary tensor |per_size| is estimated as a weigthed
average of unfolded memory of the |out| tensor and unfolded memory of
a symetric tensor with the largest coordinate size. Some experiments
showed that the best combination of the two is to take 100\% if the
latter, so we set |lambda| to zero.
The |max| number of rows in the refined |cont| must be such that each
slice fits to remaining memory. Number of columns of the slice are
never greater $max^l$. (This is not true, since stacks corresponing to
unit/zero matrices cannot be further refined). We get en equation:
$$nthreads\cdot max^l\cdot 8\cdot r = mem -
magic\_mult\cdot nthreads\cdot per\_size\cdot 8\cdot r,$$
where |mem| is available memory in bytes, |nthreads| is a number of
threads, $r$ is a number of rows, and $8$ is |sizeof(double)|.
If the right hand side is less than zero, we set |max| to 10, just to
let it do something. */
std::tuple<int, int, int>
FaaDiBruno::estimRefinement(const TensorDimens &tdims, int nr, int l)
{
int nthreads = sthread::detach_thread_group::max_parallel_threads;
long per_size1 = tdims.calcUnfoldMaxOffset();
long per_size2 = static_cast<long>(std::pow(tdims.getNVS().getMax(), l));
double lambda = 0.0;
long per_size = sizeof(double)*nr
*static_cast<long>(lambda*per_size1+(1-lambda)*per_size2);
long mem = SystemResources::availableMemory();
int max = 0;
double num_cols = static_cast<double>(mem-magic_mult*nthreads*per_size)
/nthreads/sizeof(double)/nr;
if (num_cols > 0)
{
double maxd = std::pow(num_cols, 1.0/l);
max = static_cast<int>(std::floor(maxd));
}
if (max == 0)
{
max = 10;
JournalRecord rec(journal);
rec << "dim=" << l << " run out of memory, imposing max=" << max;
if (nthreads > 1)
rec << " (decrease number of threads)";
rec << endrec;
}
int avmem_mb = mem/1024/1024;
int tmpmem_mb = nthreads*per_size/1024/1024;
return { max, avmem_mb, tmpmem_mb };
}